COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 0 - 1

Aircraft Flight Manual

Doc. No. 2010/100 Edition $2^{nd} - 2015$, October 30^{th}

TECNAM P2010

MANUFACTURER: *costruzioni aeronautiche* **TECNAM** *s.r.i.* Aircraft model: **P2010** EASA Type Certificate No: EASA.A.576 (dated 2014, September 26TH)

SERIAL NUMBER:

BUILD YEAR:

REGISTRATION MARKINGS:

This manual is approved in accordance with 14 CFR 21.29 for US registered aircraft, and is approved by the Federal Aviation Administration.

This Manual must be carried in the airplane at all times. The airplane has to be operated in compliance with procedures and limitations contained herein.

Costruzioni Aeronautiche **TECNAM** srl Via Maiorise CAPUA (CE) – Italy Tel. +39 0823 99.75.38 WEB: <u>www.tecnam.com</u>

INDEX

1.	RECORD OF REVISIONS	.3
2.	LIST OF EFFECTIVE PAGES	.7
3.	FOREWORD	.8
4.	SECTIONS LIST	.9

1. RECORD OF REVISIONS

Any revision to the present Manual, except actual weighing data, is recorded: a Record of Revisions is provided at the front of this manual and the operator is advised to make sure that the record is kept up-to-date.

The Manual issue is identified by Edition and Revision codes reported on each page, lower right side.

The revision code is numerical and consists of the number "0"; subsequent revisions are identified by the change of the code from "0" to "1" for the first revision to the basic publication, "2" for the second one, etc.

Should be necessary to completely reissue a publication for contents and format changes, the Edition code will change to the next number ("2" for the second edition, "3" for the third edition etc).

Additions, deletions and revisions to existing text will be identified by a revision bar (black line) in the left-hand margin of the page, adjacent to the change.

When technical changes cause expansion or deletion of text which results in unchanged text appearing on a different page, a revision bar will be placed in the right-hand margin adjacent to the page number of all affected pages providing no other revision bar appears on the page.

These pages will be updated to the current regular revision date.

NOTE: It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.

COSTRUZIONI ALFONANTICHE P2010 - Aircraft Flight Manual Page 0 - 4

Rev	Revised		Tecnam Approval			EASA Approval Or Under DOA
Nev	page	Revision	DO	OoA	HDO	Privileges
0	_	First issue	D.Ronca	C.Caruso	M. Oliva	New Edition

COSTRUZION A ROMANTICHE P2010 - Aircraft Flight Manual Page 0 - 5

Davi	Revised	Revised Desc	Description of	Тес	anam Appro	EASA Approval Or Under DOA
Rev	page	Revision	DO	OoA	HDO	Privileges

 2^{nd} Edition, Rev. 0

Aircraft Flight Manual RECORD OF REVISIONS

2. LIST OF EFFECTIVE PAGES

The List of Effective Pages (LOEP), applicable to manuals of every operator, lists all the basic AFM pages: each manual could contain either basic pages or one variant of these pages when the pages of some Supplements are embodied.

Pages affected by the current revision are indicated by an asterisk (*) following the revision code.

Should supplements be embodied in accordance with approved instructions, make reference to the LOEP addressed on Supplements themselves.

 1st Edition, Rev 0
 September 26, 2014

 1st Edition, Rev 1
 April 8, 2015

 2nd Edition, Rev0
 October 30, 2015

Section	Pages	Revision	
Section 0	Pages 1 thru 10	Rev 0	
Section 1	Pages 1 thru 16	Rev 0	
Section 2	Pages 1 thru 16	Rev 0	
Section 3	Pages 1 thru 30	Rev 0	
Section 4	Pages 1 thru 26	Rev 0	
Section 5	Pages 1 thru 18	Rev 0	
Section 6	Pages 1 thru 12	Rev 0	
Section 7	Pages 1 thru 38	Rev 0	
Section 8	Pages 1 thru 16	Rev 0	
Supplement List			
Section 9	Pages 1 thru 4	Rev 0	
Supplements LOEP: make reference to the Supplements Cover Pages			

3. FOREWORD

Section 1 supplies general information and it contains definitions, symbols explanations, acronyms and terminology used.

Before using the airplane, you are recommended to read carefully this manual: a deep knowledge of airplane features and limitations will allow you for operating the airplane safely.

For further information, please contact:

4. SECTIONS LIST

General (*)	Section 1
Limitations (**)	Section 2
Emergency Procedures (*)	Section 3
Normal Procedures (*)	Section 4
Performances (*)	Section 5
Weight and Balance (*)	Section 6
Airframe and Systems description (*)	Section 7
Airplane Care and Maintenance (*)	Section 8
Supplements (***)	Section 9

(*) non-approved Section

(**) approved Section

(***) partially approved Section - approved parts, if any, are reported in the supplements.

SECTION 1 - GENERAL

INDEX

1.		3
2.	CERTIFICATION BASIS	3
3.	WARNING – CAUTION – NOTE	3
4.	THREE-VIEW AND DIMENSIONS	4
5.	ENGINE	6
6.	PROPELLER	6
7.	FLIGHT CONTROL SURFACES TRAVEL	7
8.	SPECIFIC LOADINGS	7
9.	ACRONYMS AND TERMINOLOGY	9
10.	UNIT CONVERSION CHART14	4
11.	LITRES / US GALLONS CONVERSION CHART	5

INDEX

1. INTRODUCTION

The Aircraft Flight Manual has been prepared to provide pilots and instructors with information for the safe and efficient operation of this aeroplane.

This manual also contains supplemental data supplied by the aeroplane manufacturer.

2. CERTIFICATION BASIS

This type of aircraft has been approved by the European Aviation Safety Agency in accordance with CS-23 including Amendment 2 and the Type Certificate No. EASA.A.576 has been issued on 26th September 2014.

Category of Airworthiness: Normal.

Noise Certification Basis: EASA CS 36 Amendment 2.

This type of aircraft has been validated also in the normal category of 14 CFR part 23 and part 36

3. WARNING - CAUTION - NOTE

Following definitions apply to warnings, cautions and notes used in the Aircraft Flight Manual.

means that the non-observation of the corresponding procedure leads to an immediate or important degradation of the flight safety.

means that the non-observation of the corresponding procedure leads to a minor or to a more or less long term degradation of the flight safety

Draws the attention to any special item not directly related to safety but which is important or unusual.

2nd Edition, Rev.0

INTRODUCTION

- Dimensions in metres [feet] -2.64 [8.66] FRONT VIEW SIDE VIEW 7.97 [26.15] 10.30 [33.79] 3.35 [10.99] **TECNAM P2010 GENERAL VIEW** TOP VIEW

4. THREE-VIEW AND DIMENSIONS

Figure 1 – General views

Section 1 – General

2nd Edition, Rev.0

THREE-VIEW AND DIMENSIONS

Dimensions

Overall dimensions

Wing Span	10.30 m / 33.79 ft
Overall Length	7.97 m / 26.15 ft
Overall height	2.64 m / 8.66 ft
Stabilator Span	3.35 m / 10.99 ft

Wing

Wing surface	$13.9 \text{ m}^2 / 149.6 \text{ ft}^2$
Mean Geometric Chord	1.349 m / 4.427 ft
Dihedral	1°
Aspect ratio	7.63

Fuselage

Cabin width	1.14 m / 3.74 ft
Cabin length	2.3 m / 7.54 ft

Landing Gear

Wheels Track	2.1 m / 6.89 ft
Wheels base	2.15 m / 7.05 ft
Main Gear Tire	6.00-6
Nose Gear Tire	5.00-5

2nd Edition, Rev.0

5. ENGINE

Manufacturer	Lycoming Engines
Model	IO-360-M1A
Type Certificate	EASA TCDS no. IM.E.032
Engine type	Fuel injected (IO), direct drive, four cylinder horizontally opposed, air cooled with down exhaust outlets.
Maximum power	134.0 kW (180 hp) @ 2700 rpm
Maximum continuous power	134.0 kW (180 hp) @ 2700 rpm

6. **PROPELLER**

Manufacturer	MT Propeller
Model	MT 188 R 145 – 4G
Type Certificate	EASA TCDS no. P.006
Blades/hub	$2 \ wood/composite \ blades - a luminium \ hub$
Diameter	1880 mm (74 in) (no reduction allowed)
Туре	Fixed pitch

7. FLIGHT CONTROL SURFACES TRAVEL

Ailerons	Up 19°; Down 14 ° (± 2°)
Stabilator*Up 6° ; Down 17° (± 2°)	
Stabilator trim tab	Up 3°; Down 15° (± 1°)
Rudder	RH 25°; LH 25° (± 2°)
Rudder trim tab	RH 20°; LH 20° (± 2°)
Flaps	0°; 20°; 40° (± 1°)

*degrees are measured from the Stabilator Leading Edge.

8. SPECIFIC LOADINGS

	MTOW 1160 kg (2557 lb)
Wing Loading	83.45 kg/m ² (17.09 lb/ft ²)
Power Loading	6.44 kg/hp (14.21 lb/hp)

2nd Edition, Rev.0

GENERAL FEATURES

9. ACRONYMS AND TERMINOLOGY

KCAS	<u>Calibrated Airspeed</u> is the indicated airspeed expressed in knots, corrected taking into account the errors related to the instrument itself and its installation.		
KIAS	Indicated Airspeed is the speed shown on the airspeed indicator and it is expressed in knots.		
KTAS	<u>True Airspeed</u> is the KCAS airspeed corrected taking into ac- count altitude and temperature.		
V _A	<u>Design Manoeuvring speed</u> is the speed above the which it is not allowed to make full or abrupt control movement.		
V_{FE}	Maximum Flap Extended speed is the highest speed permissible with flaps extended.		
V _{NO}	<u>Maximum Structural Cruising Speed</u> is the speed that should not be exceeded, except in smooth air and only with caution.		
V _{NE}	<u>Never Exceed Speed</u> is the speed limit that may not be exceeded at any time.		
Vo	<u>Operating Manoeuvring speed</u> is the speed above the which it is not allowed to make full or abrupt control movement		
Vs	Stall Speed.		
V_{S0}	Stall Speed in landing configuration (flaps and landing gear extended).		
V _{S1}	Stall speed in clean configuration (flaps 0°).		
V _X	<u>Best Angle-of-Climb Speed</u> is the speed which results in the greatest gain of altitude with respect to a given horizontal distance.		
V_Y	<u>Best Rate-of-Climb Speed</u> is the speed which results in the great- est gain in altitude in a given time.		
V _R	<u>Rotation speed</u> : is the speed at which the aircraft rotates about the pitch axis during takeoff		
V _{LOF}	<u>Lift off speed:</u> is the speed at which the aircraft generally lifts off from the ground.		
V_{obs}	<u>Obstacle speed:</u> is the speed at which the aircraft flies over a 15m obstacle during takeoff or landing.		

Meteorological terminology

ISA	International Standard Atmosphere: is the air atmospheric standard condition at sea level, at 15 °C (59 °F) and at 1013.25 hPa (29.92 inHg).
QFE	Official atmospheric pressure at airport level: it indicates the air- craft absolute altitude with respect to the official airport level.
QNH	<u>Theoretical atmospheric pressure at sea level</u> : is the atmospheric pressure reported at the medium sea level, through the standard air pressure-altitude relationship, starting from the airport QFE.
OAT	<u>Outside Air Temperature</u> is the air static temperature expressed in degrees Celsius (°C).
Ts	Standard Temperature is 15 °C at sea level pressure altitude and decreased by 2 °C for each 1000 ft of altitude.
H _P	<u>Pressure Altitude</u> is the altitude read from an altimeter when the barometric subscale has been set to 1013 mb.

2nd Edition, Rev.0

ACRONYMS AND TERMINOLOGY

Aircraft performance and flight planning terminology

Crosswind Velocity	is the velocity of the crosswind component for the which adequate control of the air- plane during takeoff and landing is assured.
Usable fuel	is the fuel available for flight planning.
Unusable fuel	is the quantity of fuel that cannot be safely used in flight.
G	is the acceleration of gravity.
TOR	is the takeoff distance measured from actual start to MLG wheel liftoff point.
TOD	is total takeoff distance measured from start to 15m obstacle clearing.
GR	is the distance measured during landing from actual touchdown to stop point.
LD	is the distance measured during landing, from 15m obstacle clearing to actual stop.
S/R	is the specific range, that is the distance (in nautical miles) which can be expected at a specific power setting and/or flight configu- ration per kilo of fuel used.

2nd Edition, Rev.0

ACRONYMS AND TERMINOLOGY

Weight and balance terminology

Datum	"Reference datum" is an imaginary vertical plane from which all horizontal distances are measured for balance purposes.
Arm	is the horizontal distance of an item meas- ured from the reference datum.
Moment	is the product of the weight of an item mul- tiplied by its arm.
<i>C.G.</i>	<u>Center of Gravity</u> is the point at which the airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the aircraft.
Standard Empty Weight	is the weight of the aircraft with engine flu- ids and oil at operating levels.
Basic Empty Weight	is the standard empty weight to which it is added the optional equipment weight.
Useful Load	is the difference between maximum takeoff weight and the basic empty weight.
Maximum Takeoff Weight	is the maximum weight approved to perform the takeoff.
Maximum Landing Weight	is the maximum weight approved for the landing touchdown (for <i>P2010</i> it is equivalent to the Maximum Takeoff Weight).

2nd Edition, Rev.0

ACRONYMS AND TERMINOLOGY

10. UNIT CONVERSION CHART

MOLTIPLYING		BY →	YIELDS	
TEMPERATURE				
Fahrenheit	[°F]	$\frac{5}{9} \cdot (F - 32)$	Celsius	[°C]
Celsius	[°C]	$\left(\frac{9}{5} \cdot C\right) + 32$	Fahrenheit	[°F]
Forces				
Kilograms	[kg]	2.205	Pounds	[lbs]
Pounds	[lbs]	0.4536	Kilograms	[kg]
Speed				
Meters per second	[m/s]	196.86	Feet per minute	[ft/min]
Feet per minute	[ft/min]	0.00508	Meters per se-	[m/s]
Knots	[kts]	1.853	Kilometres / hour	[km/h]
Kilometres / hour	[km/h]	0.5396	Knots	[kts]
PRESSURE				
Atmosphere	[atm]	14.7	Pounds / sq. in	[psi]
Pounds / sq. in	[psi]	0.068	Atmosphere	[atm]
LENGTH				
Kilometres	[km]	0.5396	Nautical miles	[nm]
Nautical miles	[nm]	1.853	Kilometres	[km]
Meters	[m]	3.281	Feet	[ft]
Feet	[ft]	0.3048	Meters	[m]
Centimetres	[cm]	0.3937	Inches	[in]
Inches	[in]	2.540	Centimetres	[cm]
VOLUME				
Litres	[1]	0.2642	U.S. Gallons	[US Gal]
U.S. Gallons	[US Gal]	3.785	Litres	[1]
AREA				
Square meters	[m ²]	10.76	Square feet	[sq ft]
Square feet	[sq ft]	0.0929	Square meters	[m ²]

2nd Edition, Rev.0

UNIT CONVERSION CHART

11. LITRES / US GALLONS CONVERSION CHART

Litres	US Gallons
5	1.3
10	2.6
15	4.0
20	5.3
25	6.6
30	7.9
35	9.2
40	10.6
45	11.9
50	13.2
60	15.9
70	18.5
80	21.1
90	23.8
100	26.4
110	29.1
120	31.7
130	34.3
140	37.7
150	39.6
160	42.3
170	44.9
180	47.6
190	50.2
200	52.8
210	55.5
220	58.1
230	60.7
240	63.4

US Gallons	Litres
1	3.8
2	7.6
3	11.4
4	15.1
6	22.7
8	30.3
10	37.9
12	45.4
14	53.0
16	60.6
18	68.1
20	75.7
22	83.3
24	90.9
26	98.4
28	106.0
30	113.6
32	121.1
34	128.7
36	136.3
38	143.8
40	151.4
42	159
45	170.3
47	177.9
50	189.3
55	208.2
60	227.1
63	238.4

2nd Edition, Rev.0

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 2 - 1

SECTION 2 – LIMITATIONS

INDEX

1.	INTRODUCTION	3
2.	AIRSPEED LIMITATIONS	5
3.	AIRSPEED INDICATOR MARKINGS	6
4.	POWERPLANT LIMITATIONS	7
5.	FUEL	8
6.	LUBRICANT	8
7.	PAINT	9
8.	PROPELLER	9
9.	MAXIMUM OPERATING ALTITUDE	9
10.	AMBIENT TEMPERATURE	9
11.	POWERPLANT INSTRUMENT MARKINGS1	0
12.	OTHER INSTRUMENT MARKINGS1	0
13.	WEIGHTS1	1
14.	CENTER OF GRAVITY RANGE1	1
15.	FLIGHT CREW1	1
16.	APPROVED MANEUVERS1	2
16.1.	Types of Surface1	2
17.	MANEUVERS LOAD FACTOR LIMITS1	2
18.	KINDS OF OPERATION EQUIPMENT LIST (KOEL)1	3
19.	LIMITATIONS PLACARDS1	
19.1.	Speed limitations1	5
19.2.		
19.3.	No Smoking placard1	
19.4.	Baggage Compartment placard1	6

INDEX

1. INTRODUCTION

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of the aeroplane, its engine and standard systems and equipment.

2. AIRSPEED LIMITATIONS

The following table addresses the airspeed limitations and their operational significance:

AIRSPEED		KIAS	KCAS	REMARKS
V _{NE}	Never exceed speed	166	164	Do not exceed this speed in any operation.
V _{NO}	Maximum Structural Cruising Speed	132	130	Do not exceed this speed except in smooth air, and only with caution.
V _A	Design Manoeuvring speed	120	119	Do not make full or abrupt control movement above
vo	Operating Manoeuvring speed			this speed, because under certain conditions the air- craft may be overstressed by full control movement.
V _{FE}	Maximum flaps extended speed	91	92	Do not exceed this speed for indicated flaps setting.

Section 2 – Limitations

AIRSPEED LIMITATIONS

3. AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White arc	50 - 91	Positive Flap Operating Range (lower limit is V_{SO} , at specified maximum weight and upper limit is the maximum speed permissi- ble with landing flaps extension).
Green arc	59–132	Normal Operating Range (lower limit is V_{S1} at specified maximum weight and most forward c.g. with flaps retracted and upper limit is maximum structural speed V_{NO}).
Yellow arc	132 – 166	Manoeuvres must be conducted with caution and only in smooth air.
Red line	166	Maximum speed for all operations.

4. POWERPLANT LIMITATIONS

Following table reports the operating limitations the installed engine:

ENGINE MANUFACTURER: Lycoming Engines

Engine model: IO-360-M1A

MAXIMUM POWER:

	Max Power (hp)	Max rpm. Prop. rpm
Max. T.O.	180	2700
Max. Cont.	180	2700

Temperatures:

Max CHT	500° F (260° C)
Max Oil	245° F (118° C)

Oil Pressure:

Minimum Idling 25 psi (1.7 Bar)
Minimum Normal 55 psi (3.8 Bar)
Maximum Normal 95 psi (6.5 Bar)
Starting, Warm-up, taxi and take-off (Max) 115 psi (7.9 Bar)

Fuel pressure:

- At Inlet to fuel injector:	
Minimum	14 psi (0.96 Bar)
Maximum	35 psi (2.41 Bar)

Section 2 – Limitations

POWERPLANT LIMITATIONS

5. FUEL

2 TANKS:	120 litres each one (31.7 US gallons)
MAXIMUM CAPACITY:	240 litres (63.4 US gallons)
MAXIMUM USABLE FUEL:	231 litres (61 US gallons)
APPROVED FUEL:	AVGAS Grade 91/96 or 100 LL (ASTM D910)

For additional information, refer to Lycoming Service Instruction No. 1070, latest issue.

6. LUBRICANT

Recommended Grade Oil:

Average Ambient Temperature	MIL-L-6082B or	MIL-L-22851 or	
	SAEJ1966 Spec.	SAEJ1899 Spec.	
	Mineral Grades	Ashless Dispersant Grades	
All Temperatures		SAE15W50 or SAE20W-50	
Above 80°F	SAE60	SAE60	
Above 60°F	SAE50	SAE40 or SAE50	
30°F to 90°F	SAE40	SAE40	
0°F to 70°F	SAE30	SAE40, SAE30, SAE20W40	
Below 10°F	SAE20	SAE30 or SAE20W30	

For additional info, refer to "(L)IO-360-M1A Operation and Installation Manual", latest issue, "Operating instruction" Section.

FUEL & LUBRIFICANT

7. PAINT

To ensure that the temperature of the composite structure does not exceed limits, the outer surface of the aeroplane must be painted with white paint, except for areas of registration marks, placards, and ornament.

Refer to Aircraft Maintenance Manual (AMM), ATA Chapter 4 and 51, for specific paint requirements.

8. PROPELLER

MANUFACTURER:	MT Propeller
MODEL :	MT 188 R 145 – 4G
ТҮРЕ:	wood/composite 2-blade, fixed pitch
DIAMETER:	1880 mm (74 in) (no reduction is permitted)

9. MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 12000 ft (3658 m) MSL.

At altitudes above 10000 ft (3048 m) up to and including 12000 ft (3658 m), flight crew is recommended to use supplemental oxygen.

10. AMBIENT TEMPERATURE

Ambient temperature: from -25 °C (-13 °F) to +50 °C (122 °F).

Flight in expected and/or known icing conditions is forbidden.

2nd Edition, Rev.0

Section 2 – Limitations

PAINT, PROPELLER, MAX ALTITUDE AND OAT

11. POWERPLANT INSTRUMENT MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

INSTRUME	CNT	RED ARC Minimum limit	WHITE ARC Advisory	GREEN ARC Safe operation	YELLOW ARC Caution	RED ARC Maximum limit		
PROPELLER	RPM	/	/	950-2700	0-950	2700-2800		
OIL TEMP.	°F	/	/	140-245	0 - 140	245 - 255		
СНТ	°F	/	435 (line)	150-475	0 – 150 475-500	500-510		
EGT	°F	/	1000-1500	/	1375 (line)	1500-1550		
OIL PRESS	psi	0-25	/	55-95	25 - 55 95-115	115 - 125		
FUEL PRESS	psi	0-14	/	14-35	/	35 - 40		
ELIEL OTV	litres	0	1	0-115	1	1		
FUEL QTY	gal	0		0-30,4	/	/		
FUEL FLOW	l/hr	/	0-75	/	/	/		
	gal/hr	1	0-20	1	/	1	1	1

12. OTHER INSTRUMENT MARKINGS

	RED ARC	GREEN ARC	YELLOW ARC	RED ARC
INSTRUMENT	Minimum limit	Safe operation	Caution	Maximum limit
Voltmeter	20-21 Volt	24–30 Volt	21–24 Volt	30-31 Volt

2nd Edition, Rev.0

Section 2 – Limitations

POWERPLANT AND OTHER INSTRUMENT MARKINGS

13. WEIGHTS

Condition	Weight	
Maximum takeoff weight	1160 kg	2557 lb
Maximum landing weight	1160 kg	2557 lb
Maximum baggage weight	40 kg	88 lb

Baggage Compartment	Weight	
Maximum weight	40 kg	88 lb
Maximum specific pressure	0.72 kg/dm^2	14.9 lb/ft ²

NOTE

Refer to Section 6 for proper aircraft and baggage loading.

14. CENTER OF GRAVITY RANGE

Datum	Vertical plane tangent to the wing leading edge (the aircraft must be levelled in the longitudinal plane)
Levelling	Refer to the seat track supporting beams (see procedure in Section 6)
Forward limit	0.262 m (10.3 in) (19% MAC) aft of datum for all weights
Aft limit	0.440 m (17.3 in) (32% MAC) aft of datum for all weights

The pilot is responsible for ensuring that the airplane is properly loaded. Refer to Section 6 for appropriate instructions.

15. FLIGHT CREW

Minimum crew:1 pilotMaximum seating configuration:4 people (including the pilot)

2nd Edition, Rev.0

Section 2 – Limitations

WEIGHTS

16. APPROVED MANEUVERS

The aircraft is certified in Normal Category in accordance with EASA CS-23and FAA 14 CFR part 23 regulations.

Non aerobatic operations include:

- Any manoeuvre pertaining to "normal" flight
- Stalls (except whip stalls)
- Lazy eights
- Turns in which the angle of bank is not more than 60°
- Chandelle

Acrobatic manoeuvres, including spins and turns with angle of bank of more than 60° , are not approved for such a category.

In addition Intentional shutdown of engine in flight is forbidden.

Limit load factor could be exceeded by moving flight controls to maximum deflection at a speed above $V_A=V_O$ (120 KIAS, Manoeuvring Speed).

Flight in expected and/or known icing conditions, in proximity of storms or in severe turbulence is forbidden.

16.1. Types of Surface

This aircraft may operate on both paved and grass surfaces, refer to Section 5 for impacts on performances.

17. MANEUVERS LOAD FACTOR LIMITS

Maneuver load factors limits are as follows:

Positive	Negative
+ 3.8 g	- 1.52 g

Maneuver load factors limits with flaps extended are as follows:

Positive	Negative	
+ 2 g	0 g	

2nd Edition, Rev.0

18. KINDS OF OPERATION EQUIPMENT LIST (KOEL)

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 and Far-23 regulations to allow flight operations in VFR Day/Night and IFR Day/Night.

Flight in VFR Day/Night and IFR is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the airspace classification and route to be flown.

The owner is responsible for fulfilling these requirements.

Equipment	VFR Day	VFR Night	IFR Day	IFR Night	Note	
External Power				-	•	
Circuit Breakers	•	•	•	•	As Required	
Battery	•	•	•	•	-	
Safety Equipment & Furni	Safety Equipment & Furnishing					
First Aid kit	•	•	•	•		
Fire extinguisher	•	•	•	•		
ELT	•	•	•	•		
Torch (with spare batteries)		•		•		
Ice Protection					•	
Pitot heating system		•	•	•		
Landing Gear						
Wheel pants					Removable	
Lights						
Landing/taxi lights	•	•	•	•		
Strobe lights	•	•	•	•		
NAV lights	•	•	•	•		
Cabin lights		•		•		
Instrument lights		•		•		
Emergency light		•		•		
Dimming Devices		•		•		
Day/Night switch		•		•		
COM/Navigation/Engine p	oarameters			•	•	
Magnetic compass	•	•	•	•		
GARMIN G1000 Suite	•	•	•	•		
MD 302 suite		•	•	•		
Pitot system	•	•	•	•		
Clock	•	•	•	•		
Flight Controls				•	•	
Pitch trim indicator	•	•	•	•		
Flap System	•	•	•	•		
Flaps position lights	•	•	•	•		
Rudder trim system	•	•	•	•	only for VFR operations, rudder trim system may be inoperative provided the trim tab is fixed in the streamlined position and the system is electrically disabled	
Stall warning system	•	•	•	•		
	VFR Day	VFR Night	IFR Day	IFR Night		

2nd Edition, Rev.0

INTENTIONALLY LEFT BLANK

19. LIMITATIONS PLACARDS

Hereinafter limitation placards, related to the operating limitations, are placed in plain view on the pilot.

19.1. SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

19.2. OPERATING LIMITATIONS

On the central side of the instrument panel, the following placard is placed reminding the observance of aircraft operating limitations according to installed equipment configuration, see KOEL paragraph 18.

> THIS A/C CAN BE OPERATED ONLY IN NORMAL CATEGORY DAY-NIGHT-VFR-IFR (WITH REQUIRED EQUIPMENT)IN NON-ICING CONDITIONS. NO AEROBATICS MANOEUVRES, INCLUDING SPINNING, APPROVED. FOR OPERATIONAL LIMITATIONS REFER TO FLIGHT MANUAL

19.3. No Smoking placard

On the right hand side of the instrument panel the following placard is placed reminding the observance for "no smoking":

LIMITATIONS PLACARDS

19.4. BAGGAGE COMPARTMENT PLACARD

Behind the baggage compartment door the following placard is placed:

2nd Edition, Rev.0

Section 2 – Limitations

LIMITATIONS PLACARDS

SECTION 3 – EMERGENCY PROCEDURES

INDEX

1. Introduction
2. Failures indicated on the annunciation window5
2.1. Alternator failure
2.2. Pitot heating system failure
3. G1000 System Failures7
3.1. Loss of information displayed7
3.2. Loss of airspeed information7
3.3. Loss of attitude information8
3.4. Loss of altitude information8
3.5. Loss of vertical speed information9
3.6. Loss of heading information9
3.7. Display failure10
4. Engine securing11
5. Aircraft evacuation11
6. Engine failures13
6.1. Engine failure during takeoff run13
6.2. Engine failure after Take-off13
6.3. Propeller overspeed14
6.4. Irregular rpm14
6.5. CHT limit exceedance15
6.6. Oil temperature limit exceedance15
6.7. Oil pressure limits exceedance16
Low oil pressure
High oil pressure 16 6.8. Low fuel pressure 17
6.9. High fuel pressure
6.10. Defective engine controls
7. Inflight engine restart
7.1. Propeller windmilling
8. Smoke and fire
8.1. Engine fire on the ground21

2nd Edition, Rev.0

Section 3 – Emergency procedures

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 3 - 2

8.2.	Engine fire during takeoff21
8.3.	Engine fire in flight21
8.4.	Electrical smoke in cabin on the ground
8.5.	Electrical smoke in cabin during flight22
9. R	ecovery from unintentional spin23
10. O	ther emergencies25
10.1.	Loss of Essential Bus25
10.2.	Loss of Main Bus25
10.3.	Electrical system overall failure26
10.4.	Static port failure26
10.5.	Unintentional flight into icing conditions27
10.6.	Flaps control failure27
10.7.	Electrical Rudder Trim control failure
11. L	anding emergencies29
11.1.	Forced landing without engine power29
11.2.	Power-on forced landing29
11.3.	Landing with nose landing gear tire deflated
11.4.	Landing with a main landing gear tire deflated

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise.

Before operating the aircraft, the pilot should become thoroughly familiar with the present manual and, in particular, with the present Section. Further, a continued and appropriate training should be provided.

Two types of emergency procedures are hereby given:

a. "Bold faces" which must be known by heart and executed in the correct and complete sequence, as soon as possible as the failure is detected and recognized;
 These procedures characters are boxed and highlighted, as shown below:

	BEFORE ROTATION: ABORT TAKE OFF				
1. 2. 3. 4.	Throttle Rudder 	IDLE Keep heading control			

b. Other procedures which should be well theoretically know and mastered, but that are not time critical and can be executed entering and following step by step the AFM appropriate checklist.

In case of emergency the pilot should acts as follows:

- 1. Maintain aircraft control
- 2. Analyse the situation
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control if time and conditions permit

The following definitions apply:

NOTE

Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured.

Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

2nd Edition, Rev.0

Section 3 – Emergency procedures

INTRODUCTION

INTENTIONALLY LEFT BLANK

2. FAILURES INDICATED ON THE ANNUNCIATION WINDOW

The annunciator window is integrated in the GARMIN G1000. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
RED:	to indicate emergency conditions

2.1. ALTERNATOR FAILURE

Annunciation window	Alert window
ALT FAIL	Alternator failure

If ALT FAIL caution is ON:

1.	Circuit breaker(s)	Check
2.	Generator SWITCH	OFF
3.	Generator SWITCH	ON
If ALT FAIL CAUTION REMAINS on:		
4.	Generator SWITCH	OFF

A fully charged battery shall supply electrical power for at least 30 minutes.

Section 3 – Emergency procedures

ALTERNATOR FAILURE

2.2. PITOT HEATING SYSTEM FAILURE

Annunciation window	Alert window	
PITOT HEAT ON	Pitot heat on	
PITOT HEAT	Pitot heat	

When the Pitot Heating system is activated, the green **PITOT HEAT ON** advisory light turns on and the amber **PITOT HEAT** caution light turns **OFF**, indicating that the Pitot Heating system is functioning properly.

If the amber **PITOT HEAT** caution light is **ON** when the green **PITOT HEAT ON** light is on, then the Pitot Heating system is not functioning properly.

In this case apply following procedure:

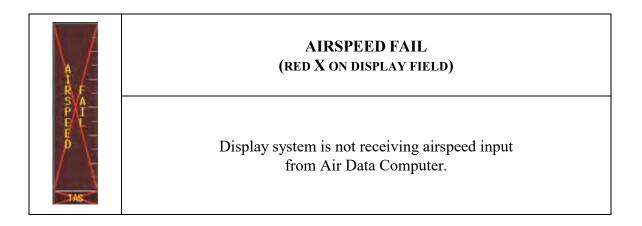
1.	Pitot heat switch	OFF
2.	Pitot heat circuit breaker	CHECK IN
3.	Pitot heat switch	ON
4.	PITOT HEAT caution light	CHECK

NOTE

if the amber light stays ON, avoid visible moisture and OATs below 10° C.

Section 3 – Emergency procedures

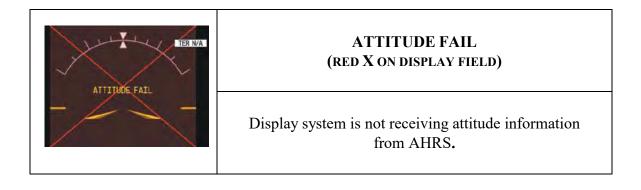
3. G1000 System Failures


3.1. Loss of information displayed

When a LRU or a LRU function fails, a large red "X" is typically displayed on the display field associated with the failed data.

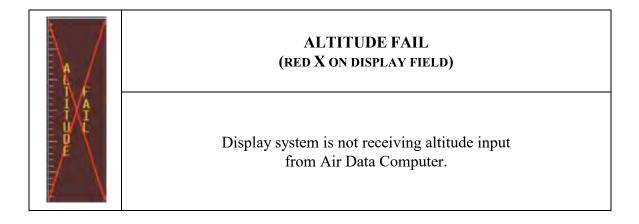
In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window.

3.2. Loss of Airspeed information



INSTRUCTION: revert to standby instrument

2nd Edition, Rev.0


Section 3 – Emergency procedures

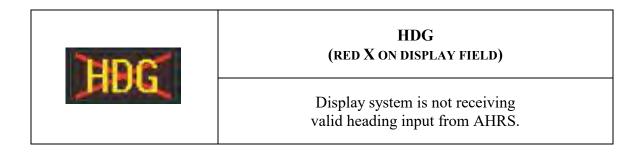
3.3. Loss of attitude information

INSTRUCTION: revert to standby instrument

3.4. Loss of altitude information

INSTRUCTION: revert to standby instrument

2nd Edition, Rev.0


Section 3 – Emergency procedures

3.5. Loss of vertical speed information

¥/	VERT SPEED FAIL (red X on display field)
	Display system is not receiving vertical speed input from Air Data Computer.

INSTRUCTION: determine vertical speed on the basis of altitude information

3.6. Loss of heading information

INSTRUCTION: revert to magnetic compass

2nd Edition, Rev.0

Section 3 – Emergency procedures

3.7. DISPLAY FAILURE

In the event of a display failure, the G1000 System automatically switches to reversionary (backup) mode. In reversionary mode, all important flight information is presented on the remaining display in the same format as in normal operating mode. The change to backup path is completely automated for all LRUs and no pilot action is required.

if the system fails to detect a display problem

1. REVERSIONARY MODE buttonPUSH

REVERSIONARY MODE button is red and located on the bottom of the audio panel.

If a display fails, the related Integrated Avionics Unit (IAU) is cut off and can no longer communicate with the remaining display: subsequently the NAV and COM functions provided to the failed display by the associated Integrated Avionics Unit are flagged as invalid on the remaining display.

2nd Edition, Rev.0

Section 3 – Emergency procedures

4. ENGINE SECURING

Following procedure is applicable to shut-down the engine in flight:

4. Electrical fuel pump Off	1. 2. 3.	Throttle Lever Ignition key Fuel Selector Electrical fuel nump	IDLE OFF OFF OFF	
5. Generator switch OFF	4. 5	Electrical fuel pump Generator switch	OFF	

5. AIRCRAFT EVACUATION

With the engine secured and propeller stopped (if practical):

1.	Parking brake	ON
2.	Seat belts	Unstrap
3.	Headphones	Remove
4.	Door	OPEN
5.	MASTER SWITCH	OFF
6.	Escape away from flames/hot brakes	engine compartment/spilling fuel tanks/hot

Section 3 – Emergency procedures

ENGINE SECURING AND AIRCRAFT EVACUATION

INTENTIONALLY LEFT BLANK

6. ENGINE FAILURES

6.1. ENGINE FAILURE DURING TAKEOFF RUN

If engine fails before rotation: ABORT TAKE OFF		
1. Throttle Lever IDLE (fully out and hold)		
2. Mixture	CUT OFF	
3. Brake	As required	

4.	Ignition key	OFF
5.	Fuel Selector	OFF
6.	Electrical fuel pump	OFF
7.	Generator&Master Switches	OFF
8.	Parking Brake	ENGAGED
9.	Aircraft Evacuation	perform if necessary

6.2. ENGINE FAILURE AFTER TAKE-OFF

If engine fails immediately after becoming airborne:

> Abort on the runway if possible.

In case low altitude precludes a runway stop and / or engine restart:

1. establish a glide attitude (85 KIAS)

> Find a suitable place on the ground to land safely.

The landing should be planned straight ahead with only small changes in directions not exceeding 45° to the left and 45° to the right

Any turn would reduce the glide performance.

2.	Throttle Lever	IDLE (fully out and hold)
3.	Mixture	CUT OFF
4.	Brakes	As required

With aircraft stopped

- 7. Ignition key..... OFF
- 8. Generator&Master Switches..... OFF
- 9. Parking Brake..... ENGAGED
- 10. Aircraft Evacuation..... perform if necessary

2nd Edition, Rev.0

Section 3 – Emergency procedures

6.3. **PROPELLER OVERSPEED**

In case of propeller overspeeding in flight, apply following procedure:

- 1. Throttle Lever REDUCE power
- 2. Mixture Lever As required
- 3. RPM indicator CHECK

If it is not possible to decrease propeller rpm, **land as soon as possible** applying *Forced landing* procedure. *(See Para 11)*

Maximum propeller rpm exceedance may cause engine components damage.

Apply caution while accelerating with power lever close to max and monitor engine RPM; RPM overspeed shall be prevented by retarding power lever.

6.4. IRREGULAR RPM

- 1. Fuel pump:ON
- 2. Fuel quantity and pressure indicators:CHECK
- 3. If necessary: SWITCH TANK

If engine continues to run irregularly

> Land as soon as possible.

2nd Edition, Rev.0

Section 3 – Emergency procedures

6.5. CHT LIMIT EXCEEDANCE

If CHT exceeds maximum limit (500°F):

Throttle Lever	REDUCE power as practical
	D'1 '1

- 2. Mixture Lever Rich as required
- 3. CHT Verify decreasing

If CHT stabilizes in the green arc:

4. Continue flight

If CHT continue to rise and engine shows roughness:

Land as soon as possible applying forced landing procedures (See Para 11)

6.6. OIL TEMPERATURE LIMIT EXCEEDANCE

If oil temperature exceeds maximum limit (245°F):

1.

Maximum oil temperature limit exceedance can be the final effect of different causes: excessive friction between moving engine components, oil leakage from the circuit (with related pressure reduction) etc.

- 1. Throttle Lever *REDUCE engine power*
- 2. Mixture lever Enrich as required
- 3. OIL TEMP CHECK

if oil temperature does not decrease:

- 4. Airspeed INCREASE
- 5. OIL TEMP CHECK

If oil temperature does not come back within limits:

6. Land as soon as practical with engine set to the minimum necessary power

If engine roughness, vibrations, erratic behaviour or high CHT is detected:

Land as soon as possible applying forced landing procedure (See Para 11)

2nd Edition, Rev.0

Section 3 – Emergency procedures

6.7. OIL PRESSURE LIMITS EXCEEDANCE

LOW OIL PRESSURE

If oil pressure is under the lower limit (25 psi)

- 1. Throttle Lever REDUCE to minimum practical
- 2. Mixture Lever as required
- 3. OIL TEMP CHECK within limits
- 4. OIL PRESS CHECK

If oil pressure does not increase and temperature remains within limits

Monitor oil and cylinder head temperatures. Land as soon as practicable.

If oil pressure does not increase and temperature exceeds limits

Reduce engine power to minimum required. Land as soon as possible applying Forced landing procedure. *(See Para 11)* Be prepared for engine failure and emergency landing.

If oil pressure tends to zero (combined with vibration, loss of oil, unusual metallic smoke and noise)

Apply Forced landing procedure. (See Para 11)

HIGH OIL PRESSURE

If oil pressure exceeds upper limit (115 psi)

- 1. Throttle Lever first REDUCE engine power by 10%
- 2. Mixture Lever as required
- 3. OIL PRESS CHECK

If oil pressure does not decrease

4. Land as soon as possible applying Forced landing procedure. (See Para 11)

NOTE

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

2nd Edition, Rev.0

Section 3 – Emergency procedures

6.8. LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit (14 psi)

Electric fuel pump...... ON
 Fuel selector valve...... Select opposite fuel tank if NOT empty
 Fuel quantity CHECK

If fuel pressure doesn't build up:

1. Land as soon as practical. Prepare for potential engine failure and prepare to apply *Forced landing procedure*. (See Para 11)

6.9. HIGH FUEL PRESSURE

If fuel pressure increases above the upper limit (35 psi)

1. Land as soon as possible. Prepare for potential engine shut down and apply *Forced landing procedure*. (See Para 11)

Possible injector failure or obstruction.

2nd Edition, Rev.0

Section 3 – Emergency procedures

6.10. DEFECTIVE ENGINE CONTROLS

Defective Mixture Control Cable

- 1. Maintain altitude to the nearest airfield
- During descent, check engine behaviour to a higher power setting. A lean mixture can lead to engine roughness and loss of power. Landing approach must be planned accordingly.

Go-around may then be impossible.

Defective Throttle Control Cable

If power is sufficient to continue flight:

- 1. Approach nearest airfield
- 2. Perform landing with shut-down engine applying *Forced landing procedure*. (See Para 11)

If power is not sufficient to continue flight:

1. Carry out Forced landing procedure. (See Para 11)

7. INFLIGHT ENGINE RESTART

7.1. **PROPELLER WINDMILLING**

In case of engine shutdown, propeller will keep windmilling and will not stop, preventing the use of ignition key. Engine inflight restart must be performed without using ignition key until propeller is windmilling in order to avoid possible engine damages.

Typical indication of a potential engine shutdown, with windmilling propeller, will be RPM running sub-idle below 600-500 RPM, to be confirmed by other engine instrument (OIL Pressure, CHT, EGT running down abnormally).

Inflight engine restart may be performed during 1g flight anywhere within the normal operating envelope of the airplane.

Master switch 1. Check ON 2. Fuel pump ON 3. Fuel quantity indicator CHECK 4. 5. Throttle Lever *Minimum 1cm(0,39in) above IDLE* 6. Mixture FULL rich 7. Throttle lever SET as required

In case of unsuccessful engine restart:

Land as soon as possible applying *Forced landing procedure*. (See Para 11)

In case of successful engine restart:

Land as soon as possible

After engine restart, if practical, moderate propeller rpm to allow the temperatures for stabilizing in the green arcs.

2nd Edition, Rev.0

Section 3 – Emergency procedures

INFLIGHT ENGINE RESTART

INTENTIONALLY LEFT BLANK

COSTRUZION AERONAUTICHE P2010 - Aircraft Flight Manual Page 3 - 21

8. SMOKE AND FIRE

8.1. ENGINE FIRE ON THE GROUND

1.	Mixture	CUT OFF
2.	Cabin heat and defrost	OFF
3.	Fuel Selector	OFF
4.	Ignition key	OFF
	Fuel pump	OFF
6.	MASTER SWITCH	OFF
7.	Parking Brake	ENGAGED
8.	Aircraft evacuation	PERFORM (Para 4)

8.2. ENGINE FIRE DURING TAKEOFF

If engine fails before rotation: ABORT TAKE OFF		
1. Throttle Lever	IDLE	
2. Mixture	CUT OFF	
<i>3.</i> Brakes	As required	
With aircraft under control		
4. Fuel Selector	OFF	
5. Electrical fuel pump	OFF	
6. Ignition key	OFF	
7. Cabin Heat	OFF	
8. Field & Master Switches	OFF	
9. Parking Brake	ENGAGED	
10. Aircraft Evacuation	PERFORM (Para 4)	

8.3. ENGINE FIRE IN FLIGHT

1.	Cabin heat and defrost	BOTHOFF
2.	Mixture	CUTOFF
3.	Fuel Selector	OFF
4.	Throttle Lever	FULL FORWARD
5.	Ignition key	OFF
	Electrical fuel pump	OFF
7.	Master Switches	OFF
8.	Cabin ventilation	OPEN
9.	Land as soon as possible applying Forced landing	g procedure. (See Para
	11)	

2nd Edition, Rev.0

Section 3 – Emergency procedures

8.4. **ELECTRICAL SMOKE IN CABIN ON THE GROUND**

1. MASTER SWITCH	OFF
2. Generator Switch	OFF
3. Cabin heat and defrost	OFF
4. Throttle Lever	IDLE
5. Ignition key	OFF
6. Fuel Selector	

With propeller stopped, evacuate the aircraft

8.5. **ELECTRICAL SMOKE IN CABIN DURING FLIGHT**

1.	Cabin heat	OFF
2.	Cabin ventilation	OPEN
3.	In case of fire, direct the fire extinguisher towar	d the base of flame

If smoke persists:

4.	Generator switch	OFF
	If smoke persists:	
-	Generator switch	ON
6.	Keep RPM above 1000	
7.	Master switch	OFF

If smoke persists:

8. Generator switch..... **OFF**

If the Generator SWITCH is set to OFF, consider that flaps are supplied by battery.

2nd Edition. Rev.0

Section 3 – Emergency procedures

SMOKE AND FIRE OCCURRENCE

9. RECOVERY FROM UNINTENTIONAL SPIN

If unintentional spin occurs:

1. Throttle 2. Decident	
 Rudder Control Yoke 	
When rotation stops:	Naradural
 4. Rudder 5. Attitude 	
5. muluu	averting speed close to/in excess of
	VNE
6. Throttle	As required

Keep full rudder against rotation until spin has stopped.

One complete turn and recovery will take about 800 to 1000 feet altitude loss.

2nd Edition, Rev.0

Section 3 – Emergency procedures

UNINTENTIONAL SPIN RECOVERY

INTENTIONALLY LEFT BLANK

10. OTHER EMERGENCIES

10.1. Loss of Essential Bus

In case of loss of essential bus, the following will be lost (related breakers are listed):

PFD	FLAP ACTUATOR
COM1	PITOT HEAT
GPS1/NAV1	STROBE LIGHT
EIS	LANDING LIGHT
FUEL PUMP	AHRS
FIELD	ADC
STALL WARNING	ANN. PANEL

Electrical power from Alternator is lost, battery will automatically provide energy (duration at least 30 min.).

Pilot will need to make reference to standby instrument for primary flight information and parameters.

Pilot will be able to use the audio panel and COM2/NAV2 via MFD.

Engine parameters and related warnings/cautions are lost.

Flaps extension and retraction will be lost, apply Flaps control failure procedure (See Para 10.6).

Strobe and landing lights will be lost, NAV and taxi lights are still available; taxi light will be the only visual aid for landing in night conditions.

10.2. Loss of MAIN BUS

In case of loss of main bus, the main bus voltage will drop to zero.

-	,	
AUDIO PANEL	INSTR. LIGHT	AVIONIC
XPDR	NAV LIGHT	MFD
A.D.I. (available running on internal bat- tery power)	TAXI LIGHT	COM2
FAN (G1000)	28/12 VDC CONVERTER	GPS2/NAV2
CABIN LIGHT	RUDDER TRIM ACTUATOR	ADF
START	12VDC SOCKET	DME
INSTRUMENT (clock, pitch trim indic.)		

The following will be lost (related breakers are listed):

Fail safe operation of Garmin G1000 allows pilot to transmit and use COM1 using headphones only; speakers will not be available

For night flights, all instrument lights will be lost, but emergency light will still be available.

2nd Edition, Rev.0

Section 3 – Emergency procedures

OTHER EMERGENCIES

10.3. ELECTRICAL SYSTEM OVERALL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	MASTER SWITCH		OFF
2.	Generator Switch		OFF
3.	MASTER SWITCH		ON
4.	Generator Switch		ON
		If failure persis	ts

Land as soon as possible

Standby instrument is still available, providing the internal battery is in good charge status (>80%) it will provide at least 1 hr of runtime.

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25% (See also Para 10.6).

10.4. STATIC PORT FAILURE

In case failure, the alternate static port in the cabin must be activated.

In this case apply following procedure:

- 1. Cabin ventilation OFF (hot and cold air)
- 2. ALTERNATE STATIC PORT VALVE OPEN
- 3. Continue the mission

2nd Edition, Rev.0

Section 3 – Emergency procedures

10.5. Unintentional flight into ICING CONDITIONS

1.	Pitot	heat	 		ON		
-	-		~	•			

- 2. Immediately fly away from icing conditions (changing altitude and direction of flight, out and below of clouds, visible moisture, precipitations).
- 3. Control surfaces *Move continuously to avoid locking*
- 4. Throttle..... *INCREASE to prevent ice build-up on propeller blades*

In event of ice build-up in correspondence of wing leading edges, stall speed increases and stall may become asymmetric. In case of stabilator ice accretion, it may loose its efficiency, leading to lack of aircraft pitch control and loss of control.

10.6. FLAPS CONTROL FAILURE

DURING TAKEOFF

In case of unintentional flaps retraction, or if the flaps control fails, and if the takeoff cannot be aborted, consider that the distances, without flaps, increase by about 20%.

- 1. Flap position..... Check and confirm
- 2. Airspeed Below 91 KIAS (V_{FE})
- 3. Land as soon as practical

DURING APPROACH/LANDING

In case of unintentional flaps retraction or if the flaps control fails, consider that the landing distance without flaps increases by about 25%.

1. Flap position.....

Check and confirm

- 2. Airspeed 80 KIAS during approach
- 3. Land as soon as practical

2nd Edition, Rev.0

Section 3 – Emergency procedures

OTHER EMERGENCIES

10.7. ELECTRICAL RUDDER TRIM CONTROL FAILURE

Trim Runaway

In event of trim runaway:

- *1.* Speed: *adjust to control aircraft without excessive pedal force*
- 2. Rudder: As required
- 3. Land aircraft as soon as practical.

<u>Trim Jamming</u>

Should trim control be jammed / inoperative:

- 1. Breaker: CHECK IN
- 2. Speed: *adjust to control aircraft without excessive pedal force*
- 3. Rudder: As required
- 4. Land aircraft as soon as practical.

11. LANDING EMERGENCIES

11.1. FORCED LANDING WITHOUT ENGINE POWER

Preparation:

	-	
1.	Flaps	UP
2.	Best Glide Speed	85KTS
3.	Radio	Transmit MAYDAY giving
		location and intentions
4.	Transponder	7700
5.	If off airport, ELT	ON
6.	Find a suitable place to land safely, plan	to approach it upwind
7.	Throttle Lever	IDLE
8.	Mixture	CUTOFF
9.	Fuel Selector	OFF
10.	Ignition key	OFF
11.	Fuel pump	OFF
12.	Seat belts	Tightly fastened
Wh	en landing is assured:	
13.	Flaps	As required
14.	Generator and Master switches	OFF

NOTE

Be prepared for aircraft evacuation (Para 4).

11.2. POWER-ON FORCED LANDING

- 1. Flaps..... *UP*
- 2. Best Glide Speed 85KTS

3. Locate the most suitable terrain for emergency landing, plan to approach upwind

4. Safety belts..... Tightly fastened

When landing is assured:

- 5. Flaps As necessary
- 6. Fuel selector valve..... OFF
- 7. Electric Fuel Pump..... OFF
- 8. Ignition Key..... OFF
- 9. Generator and Master switches...... OFF

2nd Edition, Rev.0

Section 3 – Emergency procedures

11.3. LANDING WITH NOSE LANDING GEAR TIRE DEFLATED

1. Pre-landing checklist:

Complete

2. Flaps:

Land

Complete

Land

3. Land and maintain aircraft NOSE HIGH attitude as long as possible.

As aircraft stops

4. Engine securing:

5. Airplane evacuation:

Perform(see Para. 5) Perform(see Para 4)

11.4. LANDING WITH A MAIN LANDING GEAR TIRE DEFLATED

- *1.* Pre-landing checklist:
- 2. Flaps:
- 3. Land the aeroplane on the side of runway opposite to the defective tire to compensate the change in direction which is to be expected during final rolling (put the drag in the middle)
- 4. Touchdown with the GOOD TIRE FIRST and hold aircraft with the flat tire off the ground as long as possible by mean of aileron and rudder control.

As aircraft stops

- 5. Engine securing:
- 6. Airplane evacuation:

Perform(see Para. 5) Perform(see Para. 4)

2nd Edition, Rev.0 Section 3 – Emergency procedures

SECTION 4 – NORMAL PROCEDURES

INDEX

1.	I	NTRODUCTION	3
2.	I	FR flight: training pre-requisites and incremental	
	e	exposition to G1000 suite	4
3.	A	IRSPEEDS FOR NORMAL OPERATIONS	7
4.	P	PRE-FLIGHT INSPECTION	9
	4.1.	Cabin Inspection	9
	4.2.	Aircraft Walk-around	10
5.	C	HECKLISTS	.15
	5.1.	Before Starting engine (After Preflight Inspection)	15
	5.2.	Engine Starting	16
	5.3.	Before taxiing	17
	5.4.	Taxiing	18
	5.5.	Before takeoff	19
	5.6.	Takeoff	20
	5.7.	Climb	21
	5.8.	Cruise	22
	5.9.	Mixture adjustment recommendation	22
	5.10.	Descent	23
	5.11.	Before landing	
	5.12.	Balked landing/missed approach	
	5.13.	Go-around	
	5.14.	After landing	
	5.15.	Engine shut down	
	5.16.	Postflight checks	
	5.17.	FLIGHT IN RAIN	
	5.18.	REFUELLING	
	5.19.	FLIGHT AT HIGH ALTITUDE	26

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

Section 4 describes checklists and recommended procedures for the conduct of normal operations for *P2010* aircraft.

2. IFR FLIGHT: TRAINING PRE-REQUISITES AND INCREMENTAL EX-POSITION TO G1000 SUITE

The aircraft is fully equipped with a Garmin G1000 avionic suite that integrates radio aids navigation with GPS navigation, providing an outstanding capability to support IFR flight, from basic instrument training to complex IFR scenario.

NOTE

Depending on national regulations, in some countries flying IFR with a single engine aircraft without autopilot installation and/or single pilot may or may not be allowed, any customer must pay careful attention to check limitations that may apply.

The use of G1000 software requires full system knowledge (G1000 manual which will also specify peculiar limitations), careful preparation, ground training on the computer-assisted software and pre-flight training before flight.

Furthermore, as a minimum during training, it's strongly recommended using the avionic suite in IFR with incremental steps after initial basic IFR instruction:

- 1. Initial use of a single radio-aids (No GPS);
- 2. Use of two radio-aids (No GPS);
- 3. Use of GPS for point to point navigation (No approaches);
- 4. Use of VNAV feature;
- 5. Full use of avionic suite.

The flight training syllabus for IFR instruction will need to address this incremental approach in order to give pilots awareness of full avionic potential, and to highlight the complexity of single pilot usage of G1000 Garmin suite while enroute or high density airspace structure.

Due to precision required on IFR flight, the workload that may develop using full avionic suite, may get excessive in single pilot without the aid of an autopilot.

Considering the complexity of the G1000 suite, sound judgment will be required (weather, airspace complexity, pilot skills) to assess the best option of IFR steer guidance.

 2^{nd} Edition, Rev. 0

NOTE

The necessity to correct or modify flight plans in the Garmin G1000 under these conditions may distract pilots from basic handling causing deviations from assigned parameters, so careful attention must be exercised to avoid deviations on flying parameters.

It's highly recommended to continue cross-checking flight parameters when entering flight data into the G1000, especially when trying to create / insert arrival and departure procedures and / or VNAV profiles as the quantity of actions needed is high and may distract pilots from basic and precise handling.

The following prescriptions, other than those already present in the G1000 manual, shall be observed:

- Use of GPS for precision approach navigation mode is not allowed.
- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;
- Use of GPS is prohibited for IFR in terminal area or in non-precision approach operations;

If Receiver Autonomous Integrity Monitoring (RAIM) function becomes unavailable in en route phase of flight, position must be verified every 15 minutes using other IFR approved navigation system.

Turbulence and / or crosswind:

Presence of moderate to heavy turbulence and / or strong crosswind conditions (above 20 kts crosswind) will require high drift angle to correct for wind (above 15° drift) and highly reduce spare capabilities to do other concurrent tasks inside the cockpit other than precise flying.

INTENTIONALLY LEFT BLANK

3. AIRSPEEDS FOR NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations.

	FLAPS	1160 kg (2557 lb)
Rotation Speed (V _R)	T/O	60 KIAS
Best Angle-of-Climb Speed (V _X)	T/O	65 KIAS
Best Angle-of-Climb Speed (V _X)	0°	76 KIAS
Best Rate-of-Climb speed (V _Y)	0°	82 KIAS
Flaps (V _{FE})	T/O & LAND	91 KIAS
No flaps approach	0°	80 KIAS
Approach speed	T/O	75 KIAS
Final Approach Speed	FULL	70 KIAS
Manoeuvring speed (V _A)	0°	120 KIAS
Glide Speed (V _{glide})	0°	85 KIAS
Never Exceed Speed (V _{NE})	0°	166 KIAS

INTENTIONALLY LEFT BLANK

4. PRE-FLIGHT INSPECTION

Before each flight, it is necessary to carry out a complete aircraft check including a cabin inspection followed by an external inspection, as below detailed.

4.1. CABIN INSPECTION

- 1. Aircraft documents (ARC, Certificate of Airworthiness, Noise certificate, Radio COM certificate, AFM): *check current and on board*
- 2. Weight and balance: calculate (ref. to Section 6) and check within limits
- 3. Breaker: all IN
- 4. Safety belts: connected to hard points, check condition
- 5. Ignition key: *OFF*, *key extracted*
- 6. Master switch: ON
- 7. Voltmeter: check within the limits
- 8. Lights: all ON, check for operation
- 9. Acoustic stall warning: check for operation
- 10. Master switch: OFF
- 11. Baggage: check first aid kit, ELT, fire extinguisher, luggage secured with restraint net.

4.2. AIRCRAFT WALK-AROUND

To perform the aircraft walk-around, carry out the checklists according to the pattern shown in Figure 4-1.

Visual inspection is defined as follows: check for defects, cracks, detachments, excessive play, unsafe or improper installation as well as for general condition. For control surfaces, visual inspection also involves additional check for freedom of movement and security. Red lubber lines on bolts and nuts shall be intact.

Fuel level indicated by the fuel quantity indicators must be verified by visual check of actual fuel quantity embarked in the tanks: graduated dipstick must be used.

If ignitions key is in L/R/BOTH position, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Fuel drainage operation must be carried out with the aircraft parked on a level surface. Set Cockpit Fuel Selector Valve to OFF prior to drain fuel.

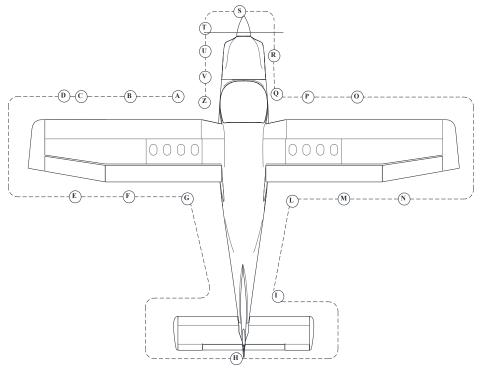


Figure 4.1

A	Left fuel filler cap	CHECK desired fuel level (use graduated dipstick). Drain the left fuel tank sump by quick drain valve using a cup to collect fuel (drainage operation must be carried with the aircraft parked on a level surface). Check for water or other contaminants. Make sure filler cap is closed.
B	Pitot tube	<i>REMOVE</i> pitot plug and check the pitot for obstructions. Do not blow inside pitot tube.
С	Left side leading edge and wing skin	<i>Visual inspection, check stall strips (if pre- sent)</i>
D	Left strobe light	Visual inspection, CHECK for integrity and fixing
Ε	Left aileron, hinges and LH tank vent line	CHECK aileron and hinges for damage, and freedom from plays; Copper bonding strips: CHECK for proper connection; Left tank vent: CHECK for obstructions.
F	Left flap and hinges	Visual inspection; Copper bonding strips: CHECK for proper connection.

2nd Edition, Rev. 0 Section 4 – Normal procedures

Pre-flight Inspection

COSTRUZION AFRONAUTICHE P2010-Aircraft Flight Manual Page 4 - 12

G	Left main landing gear	CHECK inflation, tire condition, alignment, fuselage skin condition. Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and brakes hoses: there should be no sign of hydraulic fluid leakage.
Н	Stabilator, tab and rear light	CHECK stabilator leading edge. Check the actuating mechanism of stabilator and the connection with related tab: CHECK free of play, friction. CHECK fuselage bottom and top skin. CHECK antennas for integrity. Check light for integrity.
Ι	Vertical tail and rudder	Visual inspection, check free of play, friction.
L	Right main landing gear	CHECK inflation, tire condition, alignment, fuselage skin condition. Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and brakes hoses: there should be no sign of hydraulic fluid leakage.
Μ	Right flap and hinges	Visual inspection; Copper bonding strips: CHECK for proper connection;
Ν	Right aileron, hinges and RH tank vent line	Visual inspection, check free of play, friction; Copper bonding strips: CHECK for proper connection; Right side tank vent: check for obstructions.
0	Right strobe light, leading edge and wing skin	Visual inspection, CHECK stall strips (if pre- sent), CHECK strobe light for integrity and fixing
Р	Stall indicator switch	CHECK for integrity and free of play,
Q	Right fuel filler cap	CHECK desired fuel level (use graduated dipstick). Drain the right fuel tank sump by quick drain valve using a cup to collect fuel (drainage operation must be carried with the aircraft parked on a level surface). Check for water or other contaminants. Make sure filler cap is closed.
R	Nose wheel strut and tire/ RH static port	CHECK inflation, tire condition and condi- tion of shock absorber: there should be no sign of hydraulic fluid leakage. Check the right static port for obstructions.

Pre-flight Inspection

S Propeller and spinner condition

CHECK for nicks, cracks, dents and other defects, propeller should rotate freely. Check fixing and lack of play between blades and hub.

- **T** Check the engine cowling surface conditions, then open engine inspection doors and perform the following checks:
 - a) Nacelle inlets and exhausts openings must be free of obstructions. Check connection and integrity of air intake system, visually inspect that ram air intake is unobstructed. If inlet and outlet plugs are installed, they must be removed.
 - *b) Check radiator. There should be no indication of leakage of fluid and they have to be free of obstructions.*
 - c) Check for foreign objects
 - *d)* <u>Only before the first flight of a day</u>:
 - (1) Brake Hydraulic fluid tank: check for correct level and replenish as required
 - (2) Check V belt for general condition
 - (3) Exhaust: inspect for damages, leakage and general condition.
 - (4) Check engine mount and silent-blocks for condition.
 - e) At cold engine, Check engine oil level and replenish as required. Prior to long flights oil should be added so that the oil level reaches the "max" mark.
 - *f)* Drain off Gascolator for water and sediment (drain until no water comes off). Then make sure drain valve is closed.
 - g) Check drainage hoses free of obstructions
 - *h)* Verify all parts are fixed or locked: inspect fuel circuit for leakages.

U	Engine cowling doors	CLOSE, check for proper alignment of cam- locks
V	Landing/taxi light and LH static port	CHECK, Visual inspection for integrity. Right side tank vent: check for obstructions.
Z	Tow bar and chocks	<i>REMOVE, stow on board pitot, static ports and stall warning protective plugs.</i>

Avoid blowing inside Pitot tube and inside airspeed indicator system's static ports as this may damage instruments.

INTENTIONALLY LEFT BLANK

5. CHECKLISTS

5.1. BEFORE STARTING ENGINE (AFTER PREFLIGHT INSPECTION)

- 1. Seat position and safety belts: adjust
- 2. Flight controls: operate full stroke checking for movement smoothness, free of play and friction.
- 3. Parking brake: *engage*
- 4. Throttle friction: adjust
- 5. Throttle: *IDLE*
- 6. Mixture control Lever: LEAN
- 7. Circuit Breakers: check all IN
- 8. Master switch: *ON, wait PFD turn on, Check ALT OUT caution ON, Check LOW FP and LOW OP warning ON*
- 9. <u>Only before the first flight of the day:</u>

Standby Instrument: Check no red crosses displayed.

- a. Press and hold the control knob (approx. 2 sec)
- b. Rotate the knob selecting "INFO>" page then press it
- c. Select "BATTERY INFO" page then press the knob
- d. Check "CHARGE (%)" to be more than 80%, then exit menu
- 10. Avionic Master switch: ON, wait MFD turn on, check instruments, check Voltage on Main and Essential Buses.
- 11. Fuel quantity: compare the fuel quantity indicators information with fuel quantity visually checked into the tanks (see Pre-flight inspection External inspection, and update the Garmin fuel content in the totalizer accordingly

The totalizer function available on Garmin Engine page allows input only up to 230lts (maximum usable fuel). Fuel calculations on totalizer do not use the aircraft fuel quantity indicators and are calculated from the last time the fuel was reset. Fuel consumption on totalizer is very precise as it take instantaneous fuel flow for the computation.

- 12. Electric fuel pump: ON (check for audible pump noise and increase of fuel pressure)
- 13. Warning "LOW FUEL PRESSURE": extinguished
- 14. Electric fuel pump: OFF
- 15. Flap control: cycle fully extended and then set to T/O
- 16. Pitch Trim: cycle fully up and down, then set to NEUTRAL
- 17. Rudder trim: cycle full right and left, then set to NEUTRAL

NOTE

Pitch trim position other than in neutral position would affect take off performance and take off rotation execution at the correct V_R .

18. Nav & Strobe lights: ON

In absence of RH seat occupant: fasten seat belts around the seat so as to prevent any interference with the aeroplane flight control operation and with rapid egress in an emergency.

19. Doors: Closed and locked

Checklists

Section 4 – Normal procedures

5.2. ENGINE STARTING

(a) Cold engine

- 1. Engine throttle: *lcm (1/2 inch) above idle*
- 2. Fuel selector valve: *select the tank with less fuel*
- 3. Electric fuel pump: *ON*
- 4. Mixture: full open for 3 5" (positive fuel flow indication) then CUT-OFF
- 5. Propeller area: check that area is clear of persons / objects

Check to insure no person or object is present in the area close to the propeller. Forward lower sector visibility is not possible from inside the cockpit.

Do not overheat the starter motor. Do not operate it for more than 10 seconds. After operating the starter motor, let it cool off for 20 seconds. After 6 attempts to start the engine, let the starter cool off for half an hour.

- 6. Ignition key: *BOTH*
- 7. Ignition key: *START*
- 8. Mixture: *rapidly move to FULL RICH*
- 9. Throttle: *set 1000 1200 RPM*
- 10. Check oil pressure rises within 10 sec.
- 11. Check "OIL PRESSURE LOW": extinguished
- 12. Electric fuel pump: *OFF*
- 13. Check fuel pressure: within limits
- 14. Generator switch: ON
- 15. Voltmeter: increase and check within green arc
- 16. ALT FAIL caution: *extinguished*
- 17. Nav. and taxi light: *ON*

NOTE

Avoid idling operations on the ground for optimum engine operation, maintain 1000-1200 RPM, do not exceed 2200 RPM on the ground.

- 18. Engine instruments: Check within limits
- 19. Check G1000 for warning / caution messages

Propeller area: check for area clear of persons / objects

(b) Warm engine

- 1. Engine throttle: *IDLE*
- 2. Fuel selector valve: *select the tank with less fuel*
- 3. Electric fuel pump: *ON*

Check to insure no person or object is present in the area close to the propeller. Forward lower sector visibility is not possible from inside the cockpit.

WARNING

Do not overheat the starter motor. Do not operate it for more than 10 seconds. After operating the starter motor, let it cool off for 20 seconds. After 6 attempts to start the engine, let the starter cool off for half an hour.

- 5. Ignition key: *BOTH*
- 6. Ignition key: *START*
- 7. Mixture: *rapidly to FULL RICH*
- 8. Throttle: *set 1000 1200 RPM*
- 9. Check oil pressure rises within 10 sec.
- 10. Electric fuel pump: *OFF*
- 11. Check fuel pressure within limits
- 12. Generator switch: ON
- 13. Voltmeter: increase and check within green arc
- 14. ALT FAIL caution: extinguished
- 15. Engine instruments: *check within green arc*
- 16. Check G1000 for warning / caution messages

NOTE

Avoid idling operations on the ground for optimum engine operation, maintain 1000-1200 RPM, do not exceed 2200 RPM on the ground.

5.3. BEFORE TAXIING

- 1. Flight instruments and avionics: set, TEST functions
- 2. Altimeter: set
- 3. Pitot Heat: ON, test for ammeter indication, then OFF
- 4. Parking brake: OFF

When taxiing at close range to other aircraft, or during night flight in clouds, fog or haze, the strobe lights should be switched OFF. The NAV lights must always be switched ON during night procedures.

5.4. TAXIING

- *1.* Parking brake: *Release*
- 2. Brakes: check
- 3. Flight instruments: check altimeter.

NOTE

Avoid prolonged idling during taxi.

Alternator lights may appear when reducing engine RPM below 950 RPM (yellow arc). The light will stay ON until RPM is increased above. During taxi, it is recommended to maintain propeller speed at 1000RPM or above in order to preserve a full loaded battery, minimise annunciator nuisance and assure maintenance in battery performance during flight.

Following extended operation on the ground, or at high ambient temperatures, the following indications of fuel vapor lock may appear:

- Arbitrary changes in idle RPM and fuel flow;
- Slow reaction of the engine to operation of throttle;
- Engine will not run with throttle in IDLE position.

Solution:

1. For about 1 to 2 minutes, or until the engine settles, run at a speed of 1800 to 2000 RPM. Oil and cylinder head temperatures must stay within limits.

2. Pull throttle back to IDLE to confirm smooth running.

3. Set throttle to 1200 RPM and mixture for taxiing, i.e., use mixture control lever to set the maximum RPM attainable.

4. Immediately before the take-off run set the mixture for take-off, apply full throttle and hold this position for 10 seconds.

Vapor lock can be avoided if the engine is run at speeds of 1800 RPM or more.

5.5. BEFORE TAKEOFF

- 1. Parking brake: brake pedal press, ON
- 2. Engine instruments: Check within limits
- 3. ALT OUT caution: OFF (check)
- 4. Electric Fuel pump: ON
- 5. Fuel selector valve: select the fullest tank
- 6. Fuel pressure: check
- 7. Mixture: FULL RICH

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixture may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

- 8. Throttle: *set 1500 RPM*
 - a. Alternate Air check:
 - Alternate Air: PULL (Check drop 50-100 RPM)
 - b. Mixture check:
 - Mixture: *reduce*
 - EGT: check increase
 - FF: check decrease
 - Mixture: FULL RICH
- 9. Throttle: 2100 RPM
- 10. Magneto Check: L BOTH R BOTH
 - Max RPM drop: 175 RPM
 - Max. difference: 50 RPM
- 11. Throttle: Idle
- 12. Flaps: check T/O
- 13. Pitch and Rudder trim: check neutral
- 14. Flight controls: check free
- 15. Seat belts: check fastened
- 16. Doors: check closed and locked
- 17. Parking brake: Release
- 18. Landing light: ON as required
- 19. XPDR: ON

Checklists

5.6. TAKEOFF

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixt may cause rough running of the engine or a loss of performance. The mixture may be justed to obtain smooth engine operations.

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft den altitude or higher.

During climb, a rough method of correctly leaning is to slowly reduce mixture lever until increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

- 1. Pitot HEAT: ON if required
- 2. Fuel pump: ON
- 3. Brakes: apply
- 4. Throttle: FULL and check approximately 2100 ± 100 RPM

NOTE

Engine proper performance at full throttle shall be checked early in the ground roll in order to abandon take-off if necessary.

A rough engine, sluggish RPM increase or failure to reach take-off RPM are reasons for abandoning the take-off. If the engine oil is cold, an oil pressure in the yellow sector is permissible.

- 5. Engine instruments: check parameters within the limits
- 6. Brakes: Release
- 7. Rotation speed V_R : 60 KIAS

At safe height:

8. Flaps: retract (minimum speed 73 KIAS)

NOTE

Expect to adjust pitch trim (pitch up) when retracting flaps after take-off.

- 9. Establish Climb rate V_Y: 82 KIAS
- 10. Electrical fuel pump: OFF
- 11. Fuel pressure: check within limits

Section 4 – Normal procedures

Checklists

5.7. CLIMB

Due to position of fuel sensors, during climb fuel gauges in cockpit will indicate a fuel quantity slightly lower than the real amount. Regaining level flight will immediately restore correct indications.

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixture may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft

NOTE

density altitude or higher. During climb, a rough method of correctly leaning is to slowly reduce mixture lever until an increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

1. Flaps: UP (minimum speed 73KIAS)

Expect to adjust pitch trim (pitch up) when retracting flaps after take-off

- 2. Establish climb Vy: 82KIAS
- 3. Electrical fuel pump: OFF
- 4. Fuel pressure: check within limits
- 5. Throttle: FULL
- 6. MIXTURE: RICH, above 5000ft keep EGT constant
- 7. Engine instruments: in the GREEN

NOTE

If the fuel pressure warning light illuminates, or the fuel pressure indication is below green arc, the electrical fuel pump must be switched ON.

5.8. CRUISE

- 1. Power: set performance as required, refer to table in section 5 of AFM
- 2. Fuel tank selector: *as required to maintain symmetric balance*
- 3. Mixture: set in accordance with following para 5.9

NOTE

To optimize engine life, the cylinder head temperature (CHT) should lie between $150^{\circ}F$ and $400^{\circ}F$ in continuous operation, and not rise above $435^{\circ}F$ in fast cruise.

Monitor and manually compensate asymmetrical fuel consumption by switching fuel selector valve. Switch ON the electric fuel pump prior to swap the fuel feeding from one tank to another.

5.9. MIXTURE ADJUSTMENT RECOMMENDATION

The maximum permissible cylinder head temperature (500 $^{\circ}F$) must never be exceeded.

The mixture control lever should always be moved slowly.

Before selecting a higher power setting the mixture control lever should, on each occasion, be moved slowly to fully RICH before throttle adjustment. Care should always be taken that the cylinders do not cool down too quickly. The cooling rate should not exceed 50 °F per minute.

NOTE

For maximum service life cylinder head temperature should be kept below 475 °F (high performance cruise) and below 435 °F (for economy cruise).

Best Cruise Economy Mixture

The best economy mixture setting may only be used up to a power setting of 75 %. In order to obtain the lowest specific fuel consumption at a particular power setting, proceed as follows:

- Slowly pull the mixture control lever back towards LEAN until the engine starts to run roughly.
- Then push the mixture control lever forward just far enough to restore smooth running. At the same time the exhaust gas temperature (EGT) should reach a maximum.

Best Cruise Power Mixture

The mixture can be set for maximum performance at all power settings:

- The mixture should first be set as for best economy.
- The mixture should then be enriched until the exhaust gas temperature is approximately 100°F lower.

This mixture setting produces the maximum performance for a given manifold pressure and is mainly used for high power settings (approximately 75 %).

Checklists

5.10. DESCENT

NOTE

Due to position of fuel sensors, during descent fuel gauges in cockpit will indicate a *j* quantity slightly higher than the real amount. Regaining level flight will immediately store correct indications.

- 1. Mixture control: slowly full rich
- 2. Throttle: reduce as required

Shock cooling shortens engine life.

be moved slowly to fully RICH.

NOTE

When reducing power, the change in cylinder head temperature should not exceed 50°F per minute. In order to ensure best practice and avoid potential illumination of ALT FAIL (due to low propeller speed), the following best practice should be observed:

- Reducing power to maintain a minimum descent speed of 82 KIAS (best glide) and / or a blade angle to maintain 850 RPM;
- Opening the ALTER AIR command to full open (to avoid ice accretion).

The maximum permissible cylinder head temperature (500 $^{\circ}F$) must never be exceeded.

The mixture control lever should always be moved slowly. Before selecting a higher power setting the mixture control lever should, on each occasion,

CAUTION

Care should always be taken that the cylinders do not cool down too quickly. The cooling rate should not exceed 50 °F per minute.

5.11. BEFORE LANDING

- 1. Electric fuel pump: *ON*
- 2. Fuel valve: *select the fullest tank*
- 3. Landing Light: ON

On downwind, leg abeam touch down point:

4. Flaps: set T/O (below 90KIAS)

Expect to adjust pitch trim (pitch down) when extending flaps to T/O or LAND

5. Approach speed: set

On final leg, before landing:

- 6. Mixture control lever: *RICH*
- 7. Flaps: LAND

NOTE

- 8. Final Approach Speed: set
- 9. Optimal touchdown speed: 60 KIAS

Upon flaring the aircraft has the tendency to float before touching wheels down. Taking into account local environmental constraints, consider the possibility to adjust aiming point for a better touchdown point control.

In conditions such as (e.g.) strong wind, danger of windshear or turbulence a higher approach speed shall be selected..

CAUTION

5.12. BALKED LANDING/MISSED APPROACH

- 1. Throttle: *FULL*
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*

Above a safe height:

4. Landing lights: *OFF*

5.13. GO-AROUND

- 1. Throttle: FULL
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*

5.14. AFTER LANDING

- 1. Throttle: Idle
- 2. Brakes: *apply*
- 3. Pitot heat: OFF (if ON)
- 4. Flaps: UP
- 5. Electric Fuel Pump: OFF
- 6. XPDR: OFF
- 7. Landing light: *OFF*

5.15. ENGINE SHUT DOWN

- 1. Parking brake: *set*
- 2. Keep engine running at 1200 propeller rpm for about one minute in order to reduce latent heat.
- 3. Avionic equipment: *OFF*
- 4. Throttle: *idle*
- 5. Magnetos: Check OFF BOTH
- 6. Mixture: closed
- 7. Ignition key: *OFF, key extracted*
- 8. Strobe light: *OFF*
- 9. Avionic Master: *OFF*
- 10. Master & Generator switches: OFF
- 11. Fuel selector valve: *OFF*

For safety, verify propeller is fully stopped before any other action.

Instruct passenger to fully open RH door and depart, avoiding contact with wheels and sharp wing control surfaces edges.

5.16. POSTFLIGHT CHECKS

- 1. Flight controls: lock by means of seat belts
- 2. Wheel chocks and wing mooring lines: Set
- 3. Parking brake: *Release*
- 4. Doors: *Close and lock*
- 5. Protection plugs: set over pitot tube, stall warning, static ports

5.17. FLIGHT IN RAIN

Performance deteriorates in rain; this applies particularly to take-off distance and maximum Horizontal speed. The effect on flight characteristics is minimal.

5.18. **REFUELLING**

Before refuelling, the airplane must be connected to electrical ground.

5.19. FLIGHT AT HIGH ALTITUDE

At high altitudes the provision of oxygen for the occupant is necessary. Legal requirements for the provision of oxygen should be adhered to (see para 2.9)

SECTION 5 - PERFORMANCE

INDEX

1.	Introduction	2
2.	Use of Performance Charts	2
3.	Airspeed Indicator System Calibration	3
4.	ICAO Standard Atmosphere	5
5.	Stall speed	6
6.	Crosswind	7
7.	Take-Off performances	8
8.	Take-off Rate of Climb	11
9.	En-Route Rate of Climb	12
10.	Cruise Performance	13
11.	Landing performances	15
12.	Balked Landing Performance	16
13.	Noise Data	17

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from take-off to landing.

Data reported in graphs and/or in tables were determined using:

- ✓ "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- \checkmark aircraft and engine in good condition
- ✓ average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

- ✓ Airspeed
- ✓ External temperature
- ✓ Altitude
- ✓ Weight
- \checkmark Runway type and condition

2. Use of Performance Charts

Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Normal Static Source

Graph shows calibrated airspeed V_{IAS} as a function of indicated airspeed V_{CAS} .

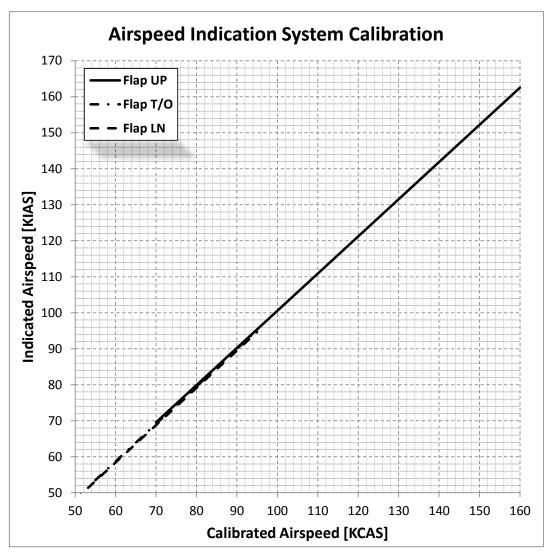
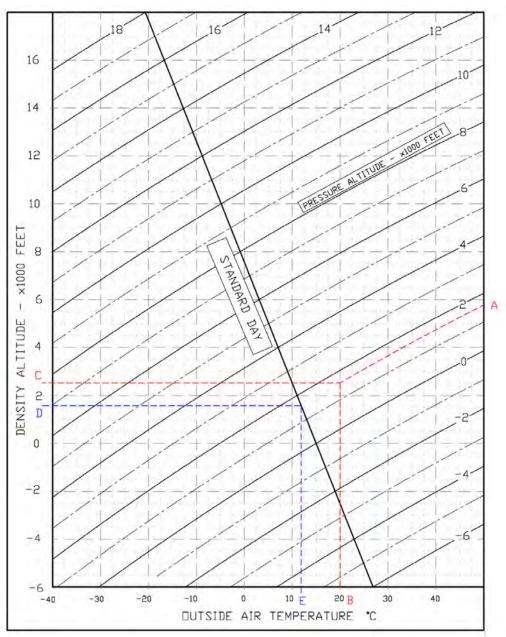


FIG. 5-1. CALIBRATED VS INDICATED AIRSPEED

Example:


<u>Given</u>	<u>Find</u>
KIAS 75.0	VOAD 747
Flap: UP	KCAS 74.7
NOTE	Indicated airspeed assumes 0 as an instrument error

 2^{nd} Edition, Rev. 0

Alternate Static Source

		Alternate St	atic Air Open	Vents	Open	Vents and I	Hot Air Open	
		IAS	H _P	IAS	H _P	IAS	H _P	
		[kn]	[ft]	[kn]	[ft]	[kn]	[ft]	
Pressure Altitude [ft]	IAS [kn]			FL/	AP UP			
	70	75	1020	72	1010	72	1020	
	90	95	1020	92	1030	93	1020	
	110	115	1030	113	1020	112	1020	
	135	140	1040	139	1030	137	1030	
				FLA	P T/O		·	
1000	60	63	1020	63	1020	62	1010	
1000	70	75	1020	73	1020	72	1020	
	90	94	1020	92	1020	92	1020	
				FLA	P LND			
	60	62	1020	61	1020	61	1020	
	70	72	1020	72	1020	71	1020	
	90	92	1020	91	1020	91	1020	
			1 1	FL/	AP UP			
	70	72	5020	72	5020	71	5020	
	90	94	5030	93	5020	92	5020	
·	110	114	5030	113	5020	112	5020	
	133	137	5040	136	5030	135	5020	
		FLAP T/O						
	60	62	5010	62	5020	61	5010	
5000	70	74	5020	73	5020	72	5020	
·	90	93	5030	93	5020	93	5020	
·		FLAP LND						
·	60	63	5030	62	5020	61	5000	
	70	72	5020	72	5010	71	5010	
	90	92	5020	92	5020	91	5010	
			1 1	FL/	AP UP			
	70	72	8020	72	8020	71	8020	
	90	93	8030	92	8020	92	8020	
	110	113	8030	112	8020	112	8020	
	128	131	8040	130	8030	130	8020	
			1 1	FLA	P T/O			
	60	62	8010	62	8020	61	8010	
8000	70	73	8020	72	8020	72	8020	
	90	92	8030	92	8020	92	8020	
				FLA	P LND			
	60	61	8020	61	8020	61	8000	
	70	72	8010	71	8010	71	8010	
	90	92	8010	91	8010	91	8010	

2nd Edition, Rev. 0

4. ICAO STANDARD ATMOSPHERE

Examples:

<u>Scope</u>	Given		Find
Density Altitude:	A: Pressure altitude = 1600ft B: Temperature = 20°C	\rightarrow	C: Density Altitude = 2550ft
ISA Temperature:	D: Pressure altitude = <i>1600ft</i>	\rightarrow	E: ISA Air Temperature = <i>12</i> ° <i>C</i>

2nd Edition, Rev. 0

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 5 - 6

5. STALL SPEED

Weight: 1160 kg (2557 lb) Throttle Lever: IDLE CG: Most Forward (19%) No ground effect									
	BANK		STALL SPEED						
WEIGHT	ANGLE	FLAPS 0°		FLAPS T/O		FLAPS FULL			
[kg] ([lb])	[deg]	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS		
	0	59	60	53	55	50	52		
1160	15	60	61	54	56	51	53		
(2557)	30	64	65	58	59	54	56		
(FWD C.G.)	45	71	71	64	65	61	62		
	60	85	85	77	78	73	74		

NOTE

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 350 ft with banking below 15°.

6. CROSSWIND

Maximum demonstrated crosswind is 12 kts.

 \Rightarrow *Example*:

<u>Given</u>

<u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 kts

Crosswind = 10 kts

Headwind = 17.5 kts

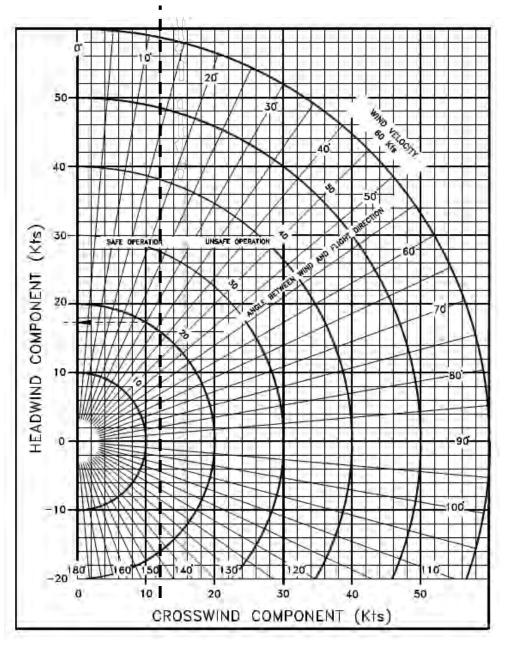


FIG. 5-3. CROSSWIND CHART

 2^{nd} Edition, Rev. 0

Section 5 - Performances crosswind

7. TAKE-OFF PERFORMANCES

NOTE

To account for likely in service performance variations apply a factored to distances of 1.10

Weight = 1160 kg (2557 lb)

Corrections

Flaps: T/O Speed at Lift-Off = 60 KIAS Speed Over 50ft Obstacle = 65 KIAS Throttle Lever: Full Forward Runway: Paved Runway Headwind: - 10 m (33 ft) for each kn

Tailwind: +20 m (66 ft) for each kn

Grass Runway: + 10% to Ground Roll

Runway slope: +10% to Ground Roll for each +1%

Pressure Altitude		Distance [m] (Distance [ft]) Temperature [°C]				
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	291 (955)	366 (1201)	451 (1480)	548 (1798)	416 (1365)
3.L.	At 50 ft AGL	442 (1450)	552 (1811)	678 (2224)	818 (2684)	626 (2054)
1000	Ground Roll	317 (1040)	399 (1309)	492 (1614)	597 (1959)	446 (1463)
1000	At 50 ft AGL	481 (1578)	601 (1972)	737 (2418)	890 (2920)	670 (2198)
2000	Ground Roll	346 (1135)	436 (1430)	538 (1765)	652 (2139)	479 (1572)
2000	At 50 ft AGL	523 (1716 ft)	655 (2149 ft)	803 (2635 ft)	969 (3179 ft)	718 (2356)
3000	Ground Roll	378 (1240)	476 (1562)	587 (1926)	712 (2336)	515 (1690)
3000	At 50 ft AGL	570 (1870)	713 (2339)	875 (2871)	1056 (3465)	770 (2526)
4000	Ground Roll	413 (1355)	520 (1706)	642 (2106)	779 (2556)	553 (1814)
4000	At 50 ft AGL	622 (2041)	778 (2552)	954 (3130)	1151 (3776)	825 (2707)
5000	Ground Roll	452 (1483)	569 (1867)	702 (2303)	851 (2792)	595 (1952)
5000	At 50 ft AGL	678 (2224)	848 (2782)	1041 (3415)	1256 (4121)	886 (2907)
6000	Ground Roll	494 (1621)	622 (2041)	768 (2520)	932 (3058)	640 (2100)
6000	At 50 ft AGL	740 (2428)	926 (3038)	1136 (3727)	1371 (4498)	951 (3120)

 2^{nd} Edition, Rev. 0

Section 5 - Performances

TAKE-OFF PERFORMANCES

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page 5 - 9

Weight = 1060 kg (2337 lb)								
		Corrections						
Flaps: T/O	Flaps: T/O			Headwind: - 10 m (33 ft) for each kn				
Speed at Lift-Off		Tailv	vind: + 20 m	(66 ft) for ea	ch kn			
-	Obstacle = 65 KIAS	Gras	s Runway: +	10% to Grou	nd Roll			
Throttle Lever:		Run	way slope: +1	10% to Grour	nd Roll for eac	ch +1%		
Runway: Paved	i KullWay			Distance [m]	1			
Pressure				(Distance [ft]	•			
Altitude			Tempera	ture [°C]	-			
[ft]		-25	0	25	50	ISA		
	Ground Roll	234 (768)	295 (968)	364 (1194)	441 (1447)	335 (1099)		
S.L.	At 50 ft AGL	358	448	549	663	507		
		(1178)	(1470)	(1801)	(2175)	(1663)		
	Ground Roll	255	321	397	481	359		
1000		(837)	(1053)	(1302)	(1578)	(1178)		
	At 50 ft AGL	389 (1276)	487 (1598)	598 (1962)	721 (2365)	543 (1781)		
		279	351	433	525	386		
2000	Ground Roll	(915)	(1152)	(1421)	(1722)	(1266)		
		424	530	651	785	582		
	At 50 ft AGL	(1391)	(1739)	(2136)	(2575)	(1909)		
	Ground Roll	304	383	473	574	414		
3000		(997)	(1257)	(1552)	(1883)	(1358)		
	At 50 ft AGL	462	578	709	856	624		
		(1516)	(1896)	(2326)	(2808)	(2047)		
	Ground Roll	333 (1092)	419 (1375)	517 (1696)	627 (2057)	445 (1460)		
4000		504	630	773	933	(1460)		
	At 50 ft AGL	(1654)	(2067)	(2536)	(3061)	(2195)		
	Ground Roll	364	458	565	686	479		
5000		(1194)	(1503)	(1854)	(2251)	(1572)		
5000	At 50 ft AGL	549	687	843	1018	718		
		(1801)	(2254)	(2766)	(3340)	(2356)		
	Ground Roll	398	501	619	750	515		
6000		(1306)	(1644)	(2031)	(2461)	(1690)		
	At 50 ft AGL	600 (1968)	750 (2461)	921 (3022)	1111 (3645)	770 (2526)		

2nd Edition, Rev. 0

Section 5 - Performances TAKE-OFF PERFORMANCES

EXTECNAM P2010 - Aircraft Flight Manual Page 5 - 10

Weight = 960 kg (2116 lb)

Flaps: T/O Speed at Lift-Off = 60 KIAS Speed Over 50ft Obstacle = 65 KIAS Throttle Lever: Full Forward Runway: Paved Runway

Corrections

Headwind: - 10 m (33 ft) for each kn Tailwind: + 20 m (66 ft) for each kn Grass Runway: + 10% to Ground Roll Runway slope: +10% to Ground Roll for each +1%

Runway: Paved Runway						
Pressure		Distance [m] (Distance [ft]) Temperature [°C]				
Altitude						
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	185 (607)	232 (761)	287 (942)	348 (1142)	264 (866)
	At 50 ft AGL	284 (932)	355 (1165)	436 (1430)	526 (1726)	402 (1319)
1000	Ground Roll	201 (659)	253 (830)	313 (1027)	379 (1243)	283 (928)
	At 50 ft AGL	309 (1014)	387 (1270)	474 (1555)	572 (1877)	431 (1414)
2000	Ground Roll	220 (722)	277 (909)	341 (1119)	414 (1358)	304 (997)
	At 50 ft AGL	337 (1106)	421 (1381)	516 (1693)	623 (2044)	462 (1516)
3000	Ground Roll	240 (787)	302 (991)	373 (1224)	452 (1483)	327 (1073)
	At 50 ft AGL	367 (1204)	459 (1506)	563 (1847)	679 (2228)	495 (1624)
4000	Ground Roll	262 (860)	330 (1083)	407 (1335)	494 (1621)	351 (1152)
	At 50 ft AGL	400 (1312)	500 (1640)	613 (2011)	740 (2428)	531 (1742)
5000	Ground Roll	287 (942)	361 (1184)	446 (1463)	541 (1775)	378 (1240)
	At 50 ft AGL	436 (1430)	546 (1791)	669 (2195)	807 (2648)	570 (1870)
6000	Ground Roll	314 (1030)	395 (1296)	488 (1601)	592 (1942)	406 (1332)
	At 50 ft AGL	476 (1562)	595 (1952)	730 (2395)	881 (2890)	611 (2005)

2nd Edition, Rev. 0

8. TAKE-OFF RATE OF CLIMB

NOTE

To account for likely in service performance variations apply a factored to rate of climb of 0.90

Throttle Lever: Full Forward Flaps: Take-Off								
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]					
Weight	Altitude	V _y		Tempera	ture [°C]	l		
[kg] ([lb])	[ft]	[KIAS]	-25	0	25	50	ISA	
	S.L.	72	1008	816	644	490	711	
	2000	72	862	673	504	352	596	
	4000	72	716	531	365	216	482	
1160	6000	72	571	389	226	79	368	
(2557)	8000	72	427	247	87	-57	253	
	10000	72	283	107	-51	-192	139	
	12000	72	139	-34	-188	-327	25	
	14000	72	-4	-174	-325	-462	-90	
	S.L.	72	1162	956	772	606	843	
	2000	72	1005	803	622	459	721	
	4000	72	849	650	472	312	598	
1060	6000	72	694	498	323	166	476	
(2337)	8000	72	539	346	175	20	353	
	10000	72	384	195	27	-125	230	
	12000	72	230	45	-121	-270	108	
	14000	72	77	-105	-268	-414	-15	
	S.L.	71	1343	1120	920	741	997	
	2000	71	1173	954	758	581	865	
	4000	71	1004	788	596	422	732	
960	6000	71	835	623	434	263	599	
(2116)	8000	71	667	459	273	105	466	
	10000	71	500	295	113	-52	333	
	12000	72	333	132	-47	-209	200	
	14000	72	166	-31	-207	-365	67	

 2^{nd} Edition, Rev. 0

Section 5 - Performances TAKE-OFF RATE OF CLIMB

9. EN-ROUTE RATE OF CLIMB

NOTE

To account for likely in service performance variations apply a factored to rate of climb of 0.90

Throttle Lever: Full Forward Flaps: UP								
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]					
Weight	Altitude	V _Y		Tempera	ture [°C]	l		
[kg] ([lb])	[ft]	[KIAS]	-25	0	25	50	ISA	
	S.L.	82	1070	885	720	571	784	
	2000	82	929	747	585	439	674	
	4000	82	789	610	451	307	564	
1160	6000	82	649	474	317	176	454	
(2557)	8000	82	510	338	184	45	344	
	10000	82	372	202	51	-85	234	
	12000	82	233	67	-82	-215	123	
	14000	82	95	-68	-213	-345	13	
	S.L.	81	1222	1023	846	686	914	
	2000	81	1071	875	701	544	796	
	4000	81	920	728	557	402	678	
1060	6000	81	770	581	413	261	560	
(2337)	8000	81	620	435	270	120	441	
	10000	81	471	289	127	-20	323	
	12000	81	323	144	-16	-159	205	
	14000	81	175	-1	-157	-299	86	
	S.L.	81	1400	1184	992	818	1066	
	2000	81	1236	1024	835	664	938	
	4000	81	1073	864	678	510	810	
960	6000	81	910	705	522	357	681	
(2116)	8000	81	747	546	366	204	553	
	10000	80	585	388	211	52	424	
	12000	80	424	230	57	-99	296	
	14000	80	263	73	-97	-250	168	

 2^{nd} Edition, Rev. 0

Section 5 - Performances EN-ROUTE RATE OF CLIMB

10. CRUISE PERFORMANCE

Weight = 1160 kg (2557 lb)										
	CORRECTIONS									
KLAS Endurance Range						Specific Range				
For each +	-15 °C of O	АТ	-2%	-2.5%	+2%	+1%	+1%			
For each -	15 °C of O/	AT	+1%	+3%	-4%	-2%	-1%			
For -100 k	g (-220 lb)	of weight	+3.3%	-	-	+3%	+4%			
			CRUIS	E PERFORMANC	E					
Pressure Altitude ft	OAT ISA deg C	RPM	KTAS	Fuel Consumption gal/hr (l/hr)	Endurance hr:mm	Range nm	Specific Range nm/gal (nm/l)			
0	15	2700	137	16.6 (62.7)	3:40	502	8.3 (2.2)			
		2600	131	15.3 (57.8)	3:59	521	8.6 (2.3)			
		2500	125	14.1 (53.4)	4:18	538	8.8 (2.3)			
		2400	119	13.1 (49.4)	4:39	553	9.1 (2.4)			
		2200	107	11.3 (42.8)	5:22	573	9.4 (2.5)			
2000	11	2700	136	15.9 (60.1)	3:50	521	8.6 (2.3)			
		2600	130	14.7 (55.6)	4:08	538	8.9 (2.3)			
		2500	124	13.6 (51.5)	4:28	554	9.1 (2.4)			
		2400	118	12.6 (47.9)	4:48	567	9.3 (2.5)			
		2200	106	11.0 (41.8)	5:30	583	9.6 (2.5)			
4000	7	2700	135	15.2 (57.7)	3:59	540	8.9 (2.3)			
		2600	129	14.1 (53.5)	4:18	556	9.1 (2.4)			
		2500	123	13.1 (49.8)	4:37	570	9.4 (2.5)			
		2400	117	12.3 (46.4)	4:57	581	9.6 (2.5)			
		2200	105	10.8 (40.9)	5:37	592	9.7 (2.6)			

2nd Edition, Rev. 0

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page 5 - 14

Weight =	= 1160 kg	(2557 lb)					
			С	ORRECTIONS			
			KTAS	Fuel Consumption	Endurance	Range	Specific Range
For each +	+15 °C of O	АТ	-2%	-2.5%	+2%	+1%	+1%
For each -	15 °C of O	۹T	+1%	+3%	-4%	-2%	-1%
For -100 k	kg (-220 lb)	of weight	+3.3%	-	-	+3%	+4%
			CRUIS	E PERFORMANC	E		
Pressure Altitude ft	OAT ISA deg C	RPM	KTAS	Fuel Consumption gal/hr (l/hr)	Endurance hr:mm	Range nm	Specific Range nm/gal (nm/l)
6000	3	2600	128	13.6 (51.6)	4:27	573	9.4 (2.5)
		2500	122	12.7 (48.2)	4:47	585	9.6 (2.5)
		2400	116	11.9 (45.1)	5:06	594	9.8 (2.6)
		2200	104	10.6 (40.1)	5:44	598	9.8 (2.6)
8000	-1	2600	128	13.2 (49.9)	4:37	588	9.7 (2.6)
		2500	122	12.3 (46.7)	4:55	598	9.8 (2.6)
		2400	116	11.6 (44.0)	5:14	605	9.9 (2.6)
		2200	104	10.4 (39.5)	5:49	603	9.9 (2.6)
10000	-5	2600	127	12.8 (48.3)	4:46	603	9.9 (2.6)
		2500	121	12.0 (45.5)	5:04	610	10.0 (2.7)
		2400	115	11.4 (43.0)	5:21	614	10.1 (2.7)
		2200	103	10.3 (39.0)	5:54	606	10.0 (2.6)
12000	-9	2500	120	11.7 (44.4)	5:11	621	10.2 (2.7)
		2400	114	11.1 (42.1)	5:28	621	10.2 (2.7)
		2200	102	10.2 (38.5)	5:59	608	10.0 (2.6)

11. LANDING PERFORMANCES

To account for likely in service performance variations apply a factored to distances of 1.67

Corrections

Weight = 1160 kg (2557 lb)

Flaps: LAND	Headwind: - 4 m (-13 ft) for each kn
Short Final Approach Speed = 66 KIAS	Tailwind: + 13 m(+43 ft) for each kn
Throttle Lever: Idle	Grass Runway: +10% to Ground Roll
Runway: Paved	Runway slope: - 3% to Ground Roll for each +1%

Pressure Altitude		Distance [m] (Distance [ft])						
		Temperature [°C]						
[ft]		-25	0	25	50	ISA		
	Ground Roll	204	225	245	266	237		
S.L.		(669)	(738)	(804)	(873)	(778)		
5.2.	At 50 ft AGL	488	509	529	550	521		
	AL DU JL AUL	(1601)	(1670)	(1736)	(1804)	(1709)		
	Ground Roll	212	233	254	276	244		
1000	Ground Roll	(696)	(764)	(833)	(906)	(801)		
1000	At 50 ft AGL	496	517	538	560	528		
	AL SU JI AGE	(1627)	(1696)	(1765)	(1837)	(1732)		
	Ground Roll	220	242	264	286	251		
2000	Ground Koli	(722)	(794)	(866)	(938)	(823)		
2000	At 50 ft AGL	504	526	548	570	535		
	AL SU JI AGL	(1654)	(1726)	(1798)	(1870)	(1755)		
	Ground Roll	228	251	274	297	259		
3000		(748)	(823)	(899)	(974)	(850)		
5000	At 50 ft AGL	512	535	558	581	543		
	AL JU JI AOL	(1680)	(1755)	(1831)	(1906)	(1781)		
	Ground Roll	236	260	284	308	267		
4000		(774)	(853)	(932)	(1010)	(876)		
4000	At 50 ft AGL	520	544	568	592	551		
	AL JU JI AOL	(1706)	(1785)	(1864)	(1942)	(1808)		
	Ground Roll	245	270	295	320	275		
5000		(804)	(886)	(968)	(1050)	(902)		
5000	At 50 ft AGL	529	554	579	604	559		
	ALJUJLAUL	(1736)	(1818)	(1900)	(1982)	(1834)		
	Ground Roll	255	280	306	332	284		
6000		(837)	(919)	(1004)	(1089)	(932)		
0000	At 50 ft AGL	539	564	590	616	568		
	AL SU JI AGL	(1768)	(1850)	(1936)	(2021)	(1864)		

 2^{nd} Edition, Rev. 0

Section 5 - Performances

LANDING PERFORMANCES

12. BALKED LANDING PERFORMANCE

NOTE

To account for likely in service performance variations apply a factored to rate of climb and to angle of climb of 0.90

Throttle Lever: Full Forward Flaps: LAND Speed: 67 KIAS								
Weight	Pressure	Steady Gradient of Climb [%]						
weight	Altitude		Tempera	ture [°C]				
[kg] ([lb])	[ft]	-25	0	25	50	ISA		
	S.L.	11.5	8.6	6	3.6	7		
	1000	10.4	7.5	4.9	2.6	6.1		
	2000	9.3	6.4	3.9	1.6	5.3		
1160	3000	8.2	5.3	2.8	0.5	4.4		
(2557)	4000	7.1	4.3	1.8	-0.5	3.5		
	5000	6	3.2	0.7	-1.5	2.7		
	6000	4.9	2.1	-0.3	-2.6	1.8		
	7000	3.8	1.1	-1.4	-3.6	0.9		
	S.L.	13.6	10.4	7.6	5	8.7		
	1000	12.4	9.2	6.4	3.9	7.7		
	2000	11.2	8	5.3	2.7	6.8		
1060	3000	10	6.9	4.1	1.6	5.8		
(2337)	4000	8.8	5.7	2.9	0.5	4.9		
	5000	7.6	4.5	1.8	-0.7	3.9		
	6000	6.4	3.3	0.6	-1.8	3		
	7000	5.2	2.2	-0.5	-2.9	2		
	S.L.	16	12.5	9.4	6.6	10.6		
	1000	14.7	11.2	8.1	5.3	9.6		
	2000	13.4	9.9	6.8	4	8.5		
960	3000	12	8.6	5.6	2.8	7.5		
(2116)	4000	10.7	7.3	4.3	1.5	6.4		
	5000	9.4	6	3	0.3	5.4		
	6000	8.1	4.7	1.7	-1	4.3		
	7000	6.7	3.4	0.5	-2.2	3.3		

 2^{nd} Edition, Rev. 0

Section 5 - Performances

BALKED LANDING PERFORMANCE

13. NOISE DATA

Noise level, determined in accordance with ICAO/Annex 16 6th Ed., July 2011, Vol. I°, Chapter 10 and 14 CFR Part 36, is **77.576** dB(A).

NOTE: No determination has been made by the Federal Aviation Administration that the noise levels of this aircraft are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

INTENTIONALLY LEFT BLANK

SECTION 6 – WEIGHT AND BALANCE

INDEX

1. II		3
2. W	/EIGHING PROCEDURES	4
	Preparation	
	Levelling	
	. Weighing	
	Determination of C.G. location	
	. Weighing record	
	. Weighing record (II)	
3. W	EIGHTS AND C.G	7
3.1.	C.G. CALCULATION SAMPLES	B
	. FULL FUEL	
3.1.2	. FULL PAYLOAD	8
4. B	AGGAGE LOADING	9
5. E	QUIPMENT LIST	1

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This section describes the procedure for establishing the basic empty weight and the moment of the aircraft. Loading procedure information is also provided.

Aircraft must be operated in accordance with the limits concerning the maximum takeoff weight and CG excursion as reported in Flight Manual Section 2.

Pilot is responsible for checking the weight and CG excursion are compliant with the related limits. CG excursion and weight limits are reported in Section 2 - Limitations.

2. WEIGHING PROCEDURES

2.1. PREPARATION

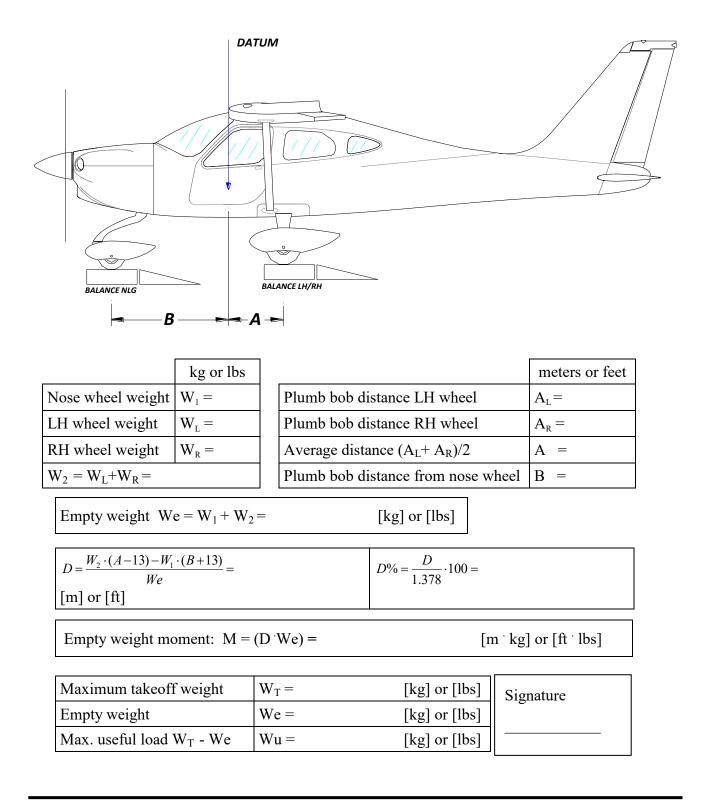
- Carry out weighing procedure inside closed hangar
- Remove from cabin any object unintentionally left
- Make sure Flight Manual and mandatory documents are on board
- Align nose wheel
- Drain fuel via the specific drain valve
- Oil and hydraulic fluid at the operating levels
- Move sliding seats to most forward position
- Raise flaps to fully retracted position
- Place control surfaces in neutral position
- Place scales (min. capacity 300 kg (661.4 lb)) under each wheel

2.2. LEVELLING

- Level the aircraft (the reference for longitudinal levelling is made putting a spirit-level on the cabin floor as shown in the Aircraft Maintenance Manual).
- Adjust longitudinal attitude deflating nose tire

2.3. WEIGHING

- Record weight shown on each scale
- Repeat weighing procedure three times
- Calculate empty weight

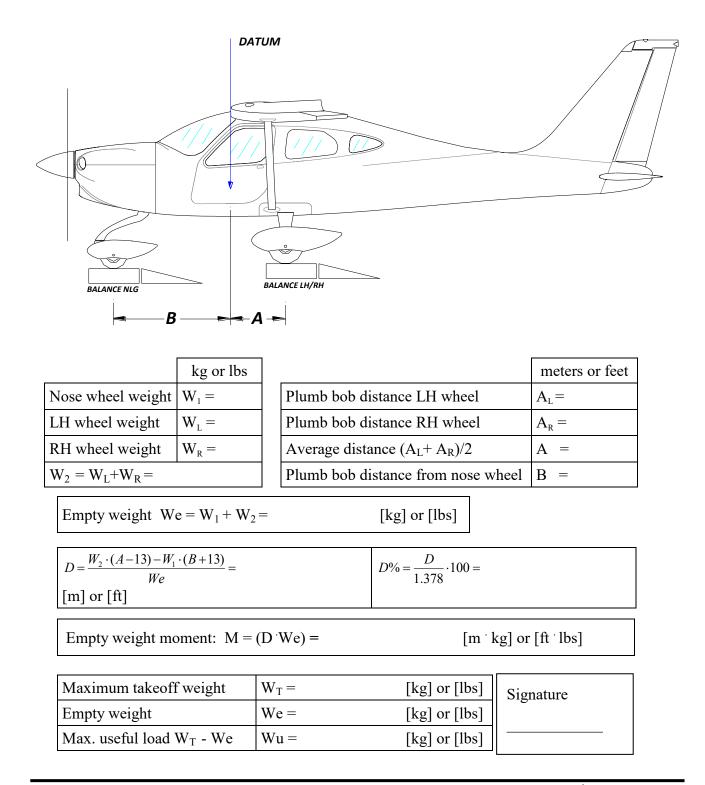

2.4. DETERMINATION OF C.G. LOCATION

- Drop a plumb bob tangent to the wing leading edge and trace a reference mark on the floor (see Figure on Para. 2.5 or 2.6)
- Repeat the operation for other wing
- Stretch a taught line between the two marks
- Measure the distance between the reference line and both main and nose wheel axis (A and B distances respectively)
- Using recorded data it is possible to determine the aircraft C.G. location and the aircraft moment (see following table)

2.5. WEIGHING RECORD

Model **P2010** S/N:_____ Weighing no. ____ Date:_____

Datum: leading edge vertical



COSTRUZION A REVNAUTICHE P2010 - Aircraft Flight Manual Page 6 - 6

2.6. WEIGHING RECORD (II)

Model **P2010** S/N:_____ Weighing no. ____ Date:_____

Datum: leading edge vertical

3. WEIGHTS AND C.G.

C.G. position can be defined by means of the chart below.

The pilot is responsible for ensuring the correct useful load loading.

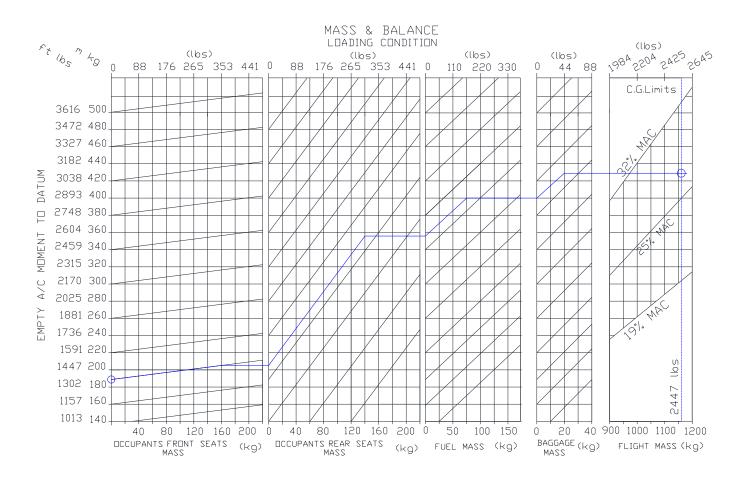


Figure 1

Example

A/C empty mass moment	188	kg*m (1360 lb*ft)
A/C empty mass	765	kg (1687 lb)
Occ. front seats	160	kg (353 lb)
Occ. rear seats	140	kg (309 lb)
Fuel	75	kg (165 lb)
Baggage	20	kg (44 lb)
A/C T.O. weight	1160	kg (2557 lb)

 2^{nd} Edition, Rev. 0

Section 6 – Weight and Balance

WEIGHTS AND C.G.

3.1. C.G. CALCULATION SAMPLES

3.1.1. FULL FUEL

	[kg]	Arm [mm]	Moment [kg*mm]					
Empty weight	775 (1708 lb)	309 (1,01 ft)	239475 (1726 lb*ft)					
CoG pos.	23,4%							
USEFUL LOAD								
Pilot	80 (176 lb)	133 (0,44 ft)	10640 (77 lb*ft)					
Pilot	0	133 (0,44 ft)	0					
ΡΑΧ	0	1057 (3,47 ft)	0					
ΡΑΧ	0	1057 (3,47 ft)	0					
Baggages	0	1599 (5,25 ft)	0					
Fuel (liters)* ρ _{fuel}	240*0,72=172,8 (381 lb)	612 (2 ft)	105754 (762 lb*ft)					
Useful load	253 (558 lb)	460 (1,5 ft)	116394 (837 lb*ft)					
W то	1028 (2266 lb)	347 (1,14 ft)	356219 (2583 lb*ft)					
CoG pos.	26,1%							

3.1.2. FULL PAYLOAD

	[kg]	Arm [mm]	Moment [kg*mm]
Empty weight	775 (1708 lb)	309(1,01 ft)	239475 (1726 lb*ft)
CoG pos.	23,4%		
	USEFL	IL LOAD	
Pilot	10640 (77 lb*ft)		
Pilot	80 (176 lb)	133 (0,44 ft)	10640 (77 lb*ft)
PAX	80 (176 lb)	1057 (3,47 ft)	84560 (278 lb*ft)
PAX	80 (176 lb)	1057 (3,47 ft)	84560 (278 lb*ft)
Baggages	0	1599 (5,25 ft)	0
Fuel (liters)* P _{fuel}	90*0,72=64,8 (198 lb)	612 (2 ft)	39658 (396 lb*ft)
Useful load	385 (849 lb)	598 (1,96 ft)	230058 (1664 lb*ft)
	1		
W _{TO}	1160 (2557 lb)	405 (1,33 ft)	469883 (3401 lb*ft)
CoG pos.	30,3%		•

 $\rho_{fuel} = density of fuel$

4. BAGGAGE LOADING

The baggage loading in the dedicated compartment must be carried out in accordance with diagram addressed on PAR. 03 and with C.G. excursion and weight limitations reported in Section 2.

Pilot is provided with a red tie-down net and snap fasteners allowing for securing the loads on the compartment floor.

Loading the baggage, make sure that you correctly stretched the net which must be secured to the four vertices of the floor. INTENTIONALLY LEFT BLANK

2nd Edition, Rev. 0

5. EQUIPMENT LIST

The following is a list of equipment which may be installed in the *P2010*. The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

EXTECNAM P2010 - Aircraft Flight Manual Page 6 - 12

EQUIPMENT LIST		AIRCRAFT S/N	DATE:			
Ref.	DESCRIPTION	P/N	INST	Wеіднт [kg] ([lb])	Акм [m] ([ft])	
INSTRUMEN	TATION					
A1	GARMIN G1000 IFDS					
A2	MD 302 MID Continent	6420302-1		0.73 (1.61)	-0.69 (-2.26)	
A3	Compass	C2400L4P		$\begin{array}{c} 0.4 \\ (0.88) \end{array}$	-0.69 (-2.26)	
A4	Pitch trim indicator – UMA instruments	N0911S0U2DR00W		0.1 (0.22)	-0.69 (-2.26)	
A5	Digital Clock - Davtron	M800-28V-BAT		0.1 (0.22)	-0.69 (-2.26)	
AVIONICS	& MISCELLANEOUS	÷			-	
B1	ELT-ACK	E-04		0.73 (1.61)	1.61 (5.28)	
B2	Front costs CEVEN	E5-01-007-T01 (LH)		10x2 = 20	0.50	
B2	Front seats GEVEN	E5-01-008-T01 (RH)		(22x2 = 44)	(1.64)	
D2	Democrate CEVEN	E5-01-007-T01 (LH)		10x2 = 20	1.26	
B3	Rear seats GEVEN	E5-01-008-T01 (RH)		(22x2 = 44)	(4.13)	
B4	Fire extinguisher	13-07655		0.8 (1.76)	-0.18 (-0.59)	
В5	First aid kit	FIA270160		0.2	0.5	
				(0.44)	(1.64) -0.18	
B6	Torch			(2.2)	(-0.59)	
B7	Battery GILL247- 24V -19Ah	G247		19.3 (42.5)	3.05 (10.01)	
B8	Fuel qty sender – Electronics international	P-300C		0.15 (0.33)	0.5 (1.64)	
В9	ADF Receiver – RA 3502	0505.757-912		1.5	3.05 (10.01)	
B10	DME Transceiver - King KN 63	066-01070-0001		(3.3) 2 (4.4)	3.05 (10.01)	
LIGHTS:				(+.+)	(10101)	
B11	Nav/POS/Strobe Light SH wing - Ultragalactica Aveo	AVE-WPST R/G-54G		1 (2.2)	0.23 (0.75)	
B12	Rudder Nav Light – PosiStrobe CT	AVE-POSW-62G		1 (2.2)	5.5 (18.04)	
B13	Landing/Taxy Light - WHELEN Mod 7167400	01-0771674-00		2 (4.4)	-1.52 (-4.99)	
PITOT STA	\TIC:			2	0.5	
B14	Pitot (Heated) - Falcon Gauge	24-AN5812-1		3 (6.6)	0.5 (1.64)	
LANDING GI	CAR ACCESSORIES				1	
C1	Nose Landing Gear Wheel Fairing	210-4-3001-401		1.2 (2.6)	-1.48 (-4.86)	
C2	Main Landing Gear Wheel Fairings	210-4-1020-001-L/R		1.5x2 = 3 (3.3x2 = 6.6)	0.66 (2.17)	

2nd Edition, Rev. 0

Section 6 – Weight and Balance EQUIPMENT LIST

SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

INDEX

1.	INTRODUCTION	.2
2.	AIRFRAME	.2
2.1.	Wing	. 2
2.2.	Fuselage	. 3
2.3.	Empennages	. 3
2.3.1	. Horizontal Tail	. 3
2.3.1	. Rudder Surface	
2.4.	Main Landing gear	
2.5.	Nose landing gear	
3.	FLIGHT CONTROLS	.8
4.	INSTRUMENT PANEL	.9
4.1.	Engine control lever	10
4.2.	Alternate Air	11
4.3.	Defrost and Cabin Heat	
5.	SEATS AND SAFETY HARNESS	13
6.	DOORS	14
7.	POWERPLANT	16
7.1.	ENGINE	16
7.2.	PROPELLER	16
8.	FUEL SYSTEM	18
9.	ELECTRICAL SYSTEM	20
9.1.	Stall Warning System	21
9.2.	Avionics	22
9.3.	External Power Supply	23
10.	PITOT-STATIC PRESSURE SYSTEMS	24
11.	LIGHTS	26
11.1.	External lights	26
11.2.	Internal lights	27
12.	PLACARDS	28
12.1.	External Placards	28
12.2.	Internal Placards	32

1. INTRODUCTION

This section provides description and operation of the aircraft and its systems.

2. AIRFRAME

P2010's airframe can be divided in the following main groups, as highlighted below on figure 7-1:

- 1) Wing
- 2) Fuselage
- 3) Empennage
- 4) Landing gear

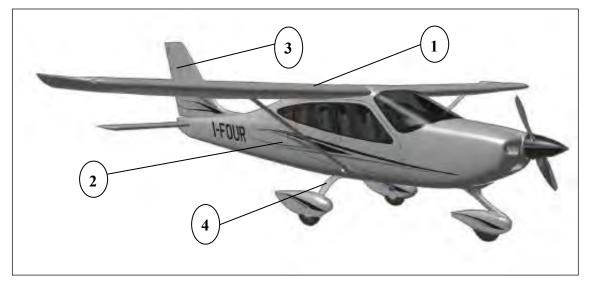


Fig. 7-1. P2010 AIRFRAME

2.1. WING

Each wing is connected to the fuselage by means of two bolt attachments and a single strut brace per side. The wings are made up of a central light alloy torsion box; a light alloy lead-ing edge is attached to the front spar whereas the flap ("slotted") and the aileron ("frise") are attached to a rear spar through two hinges each.

The torsion box consists of a front and rear spar that represent its front and rear vertical walls; a series of ribs and wrap-around panels complete the structure. Front and rear spars are integrated with wing-fuselage attachment fittings.

Integral fuel tanks are located in the wing box, behind the main spar, with a capacity of 120 litres each (31,7 gallons).

The ailerons and flaps are made by an aluminium spar attached to a formed sheet metal leading edge and metal ribs; an aluminium skin surrounds the aileron structure.

 2^{nd} Edition, Rev. 0

Section 7 – Airframe and Systems description

AIRFRAME

2.2. FUSELAGE

The P2010 fuselage is mainly made by carbon fibres composite materials.

The fuselage is made by two main shells that are later assembled bonding the two main bodies and the floor (composite) and adding aluminium parts that allow the connection of the main landing gear, seats, wing and instrument panel.

Fuselage and vertical fin are thus a unique body.

2.3. EMPENNAGES

2.3.1. HORIZONTAL TAIL

The horizontal tail is an all-moving type; the stabilizer and elevator form a single uniform plane called stabilator that rotates to the desired pitch setting.

The stabilator structure (see Figure 7-2) is made-up by two aluminium spar and ribs.

Aluminium skin panels are riveted to the above elements.

A trim tab provides stick force adjustment and longitudinal compensation through a control wheel located between pilot and co-pilot seats.

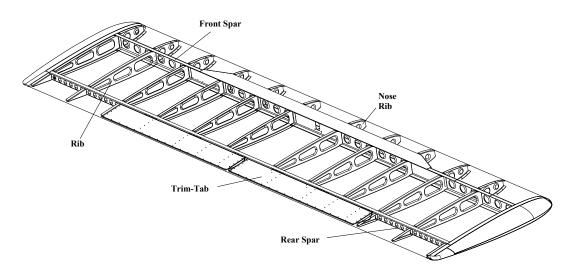


Fig. 7-2. STABILATOR STRUCTURE

2.3.1. RUDDER SURFACE

The rudder structure is made-up by a single aluminium spar (1) and ribs (2). Aluminium skin panels (3) are riveted to the above elements. It is connected to the fin through two hinges; at the lower hinge a bellcrank (4) is connected for the movement transmission.

A trim tab (5) provides stick force adjustment and lateral compensation through a rocker switch located between pilot and co-pilot seats.

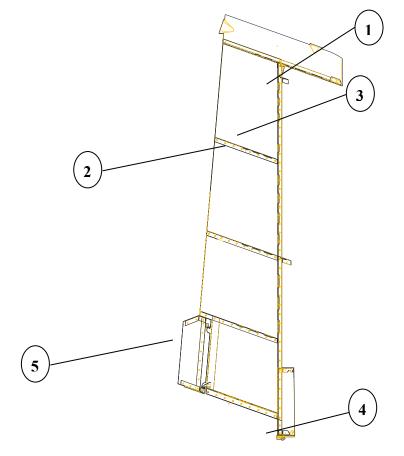


Fig. 7-3. RUDDER STRUCTURE

2.4. MAIN LANDING GEAR

The main landing gear consists of two steel leaf-springs positioned crossways to the fuse-lage.

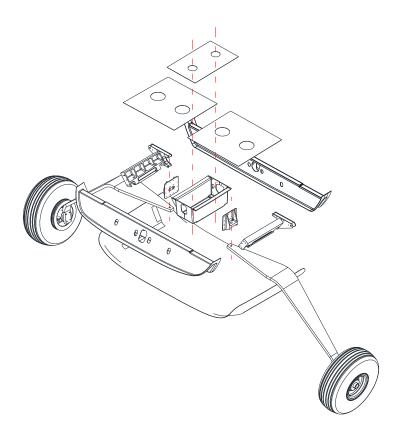


Fig. 7-4. MAIN LANDING GEAR STRUCTURE

The steel leaf-springs are attached to the fuselage structure on composite beams.

Wheels are cantilevered on gear struts and feature hydraulically actuated disc brakes controlled by toe. Main gear wheels install type 6.00-6 tires inflated at 36 psi (2.5 bar).

P2010 is provided with an independent hydraulically actuated brake system for each main wheel. A master cylinder is attached to each pilot's rudder pedal. Hydraulic pressure, applied via the master cylinders, enters the brake via lines connected to an inlet fitting on the caliper.

A parking brake valve, mounted in correspondence of the cabin floor and operated by a knob on the cockpit central pedestal, intercepts the hydraulic lines, once pressurized by toe brakes, to hold the brake assemblies linings tightened round the main wheels brake discs. Brakes can be operated from either pilot's and co-pilot's pedals: a single vented oil reservoir feeds the pilot side master cylinders which are connected, via hoses, with the co-pilot's side ones.

2nd Edition, Rev. 0 Section 7 – Airframe and Systems description AIRFRAME

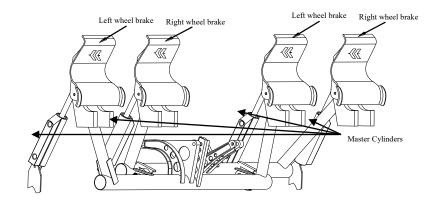


Fig. 7-5. RUDDER PEDALS AND BRAKE MASTER CYLINDERS (PILOT AND CO-PILOT SIDE)

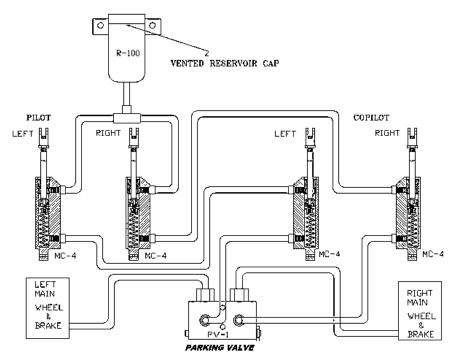


Fig. 7-6. BRAKE SYSTEM SCHEMATIC

AIRFRAME

2.5. Nose landing gear

A Pivoting nose gear is attached to the firewall reinforcement plate. The shock absorber is fitted on the upper machined component and directly on the nose landing gear structure.

In Figure 10 is shown:

- *1)* Hydraulic shock absorber
- 2) Firewall
- 3) Nose wheel (5.00-5 tire, inflated at 32 PSI (2.2 BAR))

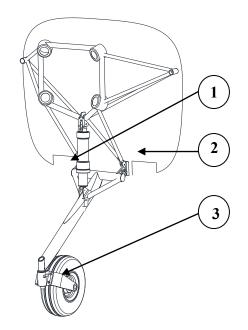


Fig. 7-7. Nose Landing Gear

AIRFRAME

3. FLIGHT CONTROLS

Aircraft flight controls are operated through conventional stick and rudder pedals. Longitudinal control acts through a system of push-rods and is equipped with a trim tab. a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially. Aileron trimming is carried out on ground through a small tab positioned on left aileron.

Flaps are extended via an electric servo actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the indicator displays three markings related to 0° , takeoff (T/O) and landing (FULL) positions. A breaker positioned on the right side of the instrument panel protects the electric circuit.

The control of the stabilator trim is operated by means of a control wheel, located between the two front seats that acts directly on the control cables.

Stabilator trim position is displayed on a dedicated analogue indicator located on the LH area of the instrument panel.

Rudder Trimming device for lateral control is provided by means of an electrical actuator controlled by a rocker switch located near the pitch trim wheel; the surface is connected to a potentiometer linked to a rudder trim indicator included in the Garmin G1000 EIS (Engine Indication System).

4. INSTRUMENT PANEL

The instrument panel is divided in three areas:

- The left area holds Garmin G1000 PFD, a chronometer and the pitch trim indicator;
- The Central area holds the standby unit for PFI parameters, MD 302 suite, and the ELT button.
- The right area holds Garmin G1000 MFD and breaker panel;
- The lower-LH portion of the instrument panel holds:
 - \succ Ignition key;
 - Master and Generator switches;
 - Emergency fuel pump;
 - Avionic Master switch;
- The lower-Central portion of the instrument panel holds:
 - ➢ Fuel selector valve.
 - ➢ Flap Control
- The lower-RH portion of the instrument panel holds:
 - > Pocket

Fig. 7-8. INSTRUMENT PANEL

4.1. **ENGINE CONTROL LEVER**

Engine handling is via three levers: Throttle, RPM lever, Mixture control lever.

They're situated on the center control; the use of "front/forward" and "rear/backward" is defined in relation to the direction of flight (longitudinal).

Mixture control lever

This lever (right hand lever with red handle) controls the fuel-air mixture, which is supplied to the engine.

With the lever full forward, extra fuel is being supplied to the engine which at higher performance setting contributes to engine cooling.

In cruise, the mixture should be made leaner in order to reach the appropriate fuel-air mixture. The leaning procedure is given in Chapter 4.

Lever forward (RICH) >> Mixture rich (in fuel)

Lever to rear (LEAN) >>Mixture lean (in fuel)

To shut off the engine the mixture control lever is pulled to the rear stop: air without fuel is drawn into the cylinders that shuts down.

<u>Throttle</u>

This lever (left hand with large knob) is used to control manifold pressure (MAP).

High manifold pressure means a large quantity of fuel-air mixture is being supplied to engine, while low manifold pressure means a lesser quantity of fuel-air mixture is being supplied.

4.2. ALTERNATE AIR

Alternate Air knob is located on the central pedestal; when the knob is fully pulled outward from the instrument panel, injectors receive maximum hot air. During normal operation, the knob is set in OFF position.

4.3. DEFROST AND CABIN HEAT

Two knobs, located on the lower side of the central pedestal, allow Defrost and Cabin Heat function. The one marked as "Defrost and Cabin Heat" allows hot air to perform windshield defrost and partially cabin heat.

The cabin heat control knob, when fully outward, allows cabin to receive maximum hot air. When both cabin heat and defrost and cabin heat are pulled, air is partitioned.

Fig. 7-9. CENTRAL PEDESTAL

INTENTIONALLY LEFT BLANK

5. SEATS AND SAFETY HARNESS

In correspondence of the seats, three fitting points safety belts are provided; belt adjustment is via the sliding buckle located on the belt metal hook.

Seats are built with light allow tube structure and synthetic material cushioning. It is

possible to perform following seat adjustments:

Horizontal – pulling the lower front lever and sliding the seat *Vertical* – operating the lever located on the outward seat side *Seat back inclination* – unlocking it via the lateral knob

These adjustments ensure the crew and passengers comfort.

6. DOORS

P2010 features three doors:

The main door is placed on the left side of the cabin, while on the right side there are two secondary doors, one on the front side and the other on the rear, used as an emergency exit.

On the right side of the cabin is located an additional door which gives access to the baggage compartment.

Baggage door can be opened from the inside of the cabin, where near the rear RH seat a dedicated knob is located.

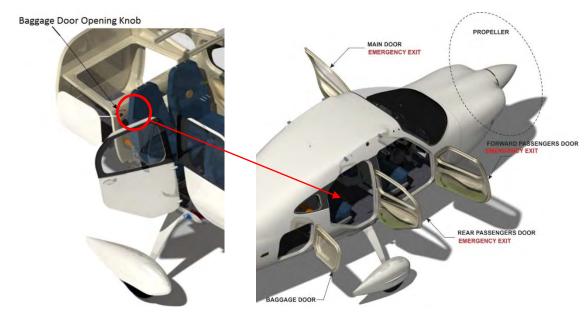


Fig. 7-11. DOORS AND BAGGAGE DOOR OPENING

"NOTE: opening of baggage compartment is only provided inside the cockpit. Occupants of rear seat shall be briefed in order to avoid unnecessary use of command by people seated in the rear seats"

The internal handle can be locked, to avoid any chance of inadvertent opening, by means of a hook located nearby the handle itself and upper safety block, following pictures show the functioning.

Fig. 7-12. HANDLE LOCKING

In case of rapid escapes or door handles malfunction, an emergency opening is provided on the rear side of the door.

The opening is operated by means of a hook, moved forward, that bypasses the normal door opening.

Fig. 7-13. Emergency Opening

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 7 - 16

7. POWERPLANT

7.1. ENGINE

Manufacturer	Lycoming Textron
Model	IO-360-M1A
Type Certificate	EASA TCDS no. IM.E.032
Engine type	Fuel injected (IO), direct drive, four cylinder horizontally opposed, air cooled with down exhaust outlets.
Maximum power Maximum continuous power	134.0 kW (180hp) @ 2700 rpm 134.0 kW (180hp) @ 2700 rpm

Oil Consumption						
Operation	RPM	HP	Max.	*Max.		
			Oil Cons.	Cyl. Head		
			Qts./Hr.	Temp.		
Normal Rated	2700	180	.80	500°F (260°C)		
Performance Cruise (75%)	2450	135	.45	500°F (260°C)		
Economy Cruise (60R Rated)	2350	117	.39	500°F (260°C)		

7.2. **PROPELLER**

Manufacturer	MT Propeller
Model	MT 188 R 145 – 4G
Type Certificate	EASA TCDS no. P.006
Blades/hub	$2 \ wood/composite \ blades - aluminium \ hub$
Diameter	1880 mm (6,17 ft) no reduction allowed
Туре	Fixed pitch

INTENTIONALLY LEFT BLANK

 2^{nd} Edition, Rev 0

8. FUEL SYSTEM

The fuel system is designed to supply the reciprocating engine (Lycoming IO-360-M1A) with the suitable flow rate and pressure according to engine limitations required by Lycoming operator manual.

Following figure shows a schematic of the fuel system assy for P2010 airplane.

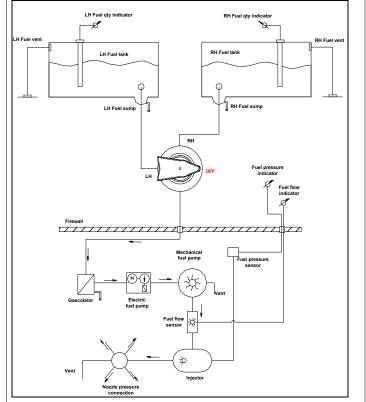


Fig. 7-14. FUEL SYSTEM SCHEME

Each fuel tank is integrated within the wing box. The capacity of each tank is 120 liters (31,7 gal.), total capacity is thus 240 liters (63.4 gal.).

The internal side of fuel tank is accessible for inspection through 4 upper dedicated caps.

Two bottom inspection panels allow the inspection of vent line and tank structure.

An anti-sloshing movable wall is located within each fuel tank, this prevents fuel centrifugation which is a possible cause of undesired engine shut down.

The fuel tank filler cap is located on the top of the wing, in the area outside of the tank and it is easily accessible from the leading edge of the aircraft. At the lowest point of the tank it is positioned a drain sump.

The engine is equipped with an engine gear pumps, mechanical (primary). An additional auxiliary electrical fuel pump is provided (auxiliary).

The fuel selector is operated by a fuel selector control knob located in the cabin on the central panel. The fuel selector control and the fuel valve are connected via a rigid control rod.

INTENTIONALLY LEFT BLANK

9. ELECTRICAL SYSTEM

Primary DC power is provided by an external alternator with a 28 VDC output, rated of 70 Amps @ 2700 rpm. During normal operations, it recharges the battery.

Secondary DC power is provided by a lead type battery (GILL G-247) which provides the energy necessary for feeding the essential electrical loads in the event of an alternator failure.

The switch between the energy sources is automatic and no action is required in order to activate the alternate energy source.

For ground maintenance and/or starting, an external power socket is provided.

The alternator and battery are connected to the battery bus in order to provide energy for the electric equipment.

Each electrically fed instrument is connected to a dedicated circuit breaker which protects the cable from the battery bus to the associated electric equipment.

If the Ignition is in the position L, R, or BOTH, an accidental movement of the propeller may start the engine with possible danger for bystanders.

In the following figure is presented the electrical system architecture.

COSTRUZIONI A ERONAUTICHE P2010 - Aircraft Flight Manual Page 7 - 21

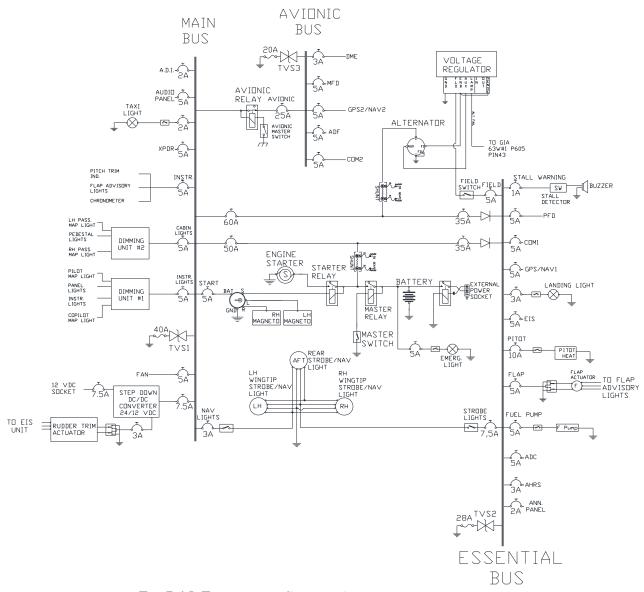


FIG.7-15. ELECTRICAL SYSTEM ARCHITECTURE

9.1. STALL WARNING SYSTEM

The aircraft is equipped with a stall warning system consisting of a sensor located on the right wing leading edge connected to a warning horn located near the instrument panel.

9.2. Avionics

The avionic system installed on P2010 is mainly based on the integrated avionic suite Garmin G1000. The installed configuration is based on a two-screen layout.

Primary flight information are displayed on the LH screen, namely PFD (Primary Flight Display).

Primary Engine and moving map information are displayed on the RH display, namely MFD (Multi-Function Display).

Both communication and navigation means, including the ones provided by third party units (i.e. ADF and DME), are integrated within the suite and their related information are displayed on both PFD and MFD.

In the event of a PFD or MFD failure the "reversionary mode" is automatically enabled.

In the event of a failure of the automatic reversion logic, the pilot can force reversionary mode by pressing "reversionary mode" button marked in red and located on the audio-panel.

When reversionary mode is activated primary flight and engine information are presented together on the remaining display.

In order to provide the pilot with main flight information in the event of a dual display failure of both PFD and MFD, or in the event of an AHRS and ADC units combined failure, an integrated digital stand-by instrument, Mid-Continent MD-302, featuring airspeed, altitude, attitude and slip information is installed.

A dedicated analogue indicator is provided for pitch trim position.

The installed equipment is such that the aircraft is able to fly under day/night VFR and day/night IFR rules and to perform ILS CAT I approaches with ILS.

9.3. EXTERNAL POWER SUPPLY

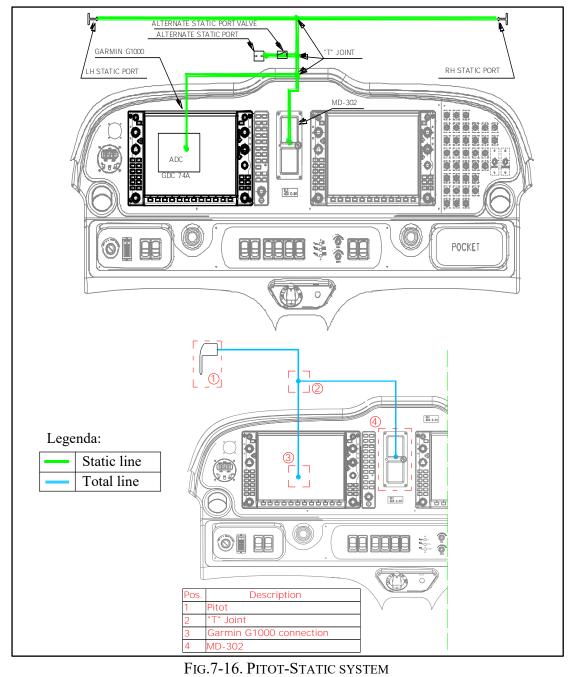
On the right side of the tail cone, an external power is present. Using this device it is possible to feed the electric system directly on the main bus bar, by an external power source. It should be used at the engine start-up in cold weather condition.

A white advisory "EXT. POWER" label will appear on Garmin PFD display upon connection of external power in order to advise pilot; the label will disappear upon disconnection of ground external power.

Exercise caution while applying external power. Exercise extreme caution while disconnecting external power with engine running due to airflow coming from the propeller. Approach the power supply receptacle from rear of the wing. Make a positive check, upon disconnection, that:

- the power chord is free from any aircraft structure
- the receptacle is firmly closed.

Follow this procedure to start the engine using the external power source.


- 1. Ignition key, Master switch, Generator switch: OFF
- 2. Open the receptacle door and insert the external power source's plug into the socket
- 3. Engine start-up procedure (see Sect. 4 in this manual)
- 4. Disconnect the external power source's plug and close firmly the receptacle door.

2nd Edition, Rev 0

10. PITOT-STATIC PRESSURE SYSTEMS

The P2010 air speed/altitude indicating systems are connected with a Pitot-Static system based on a total pressure/Pitot probe (simple Pitot tube, heated for icing protection) mounted on left wing strut and two static pressure ports connected in parallel and located in correspondence of engine firewall on left and right side of fuselage. Flexible hoses connects total pressure and static ports to primary analogue instruments, anemometer and altimeter.

Garmin G1000 suite and standby MD 302 unit are connected to both static and total pressure lines providing both air speed and altitude information.

2nd Edition, Rev 0

Section 7 – Airframe and Systems description

PITOT-STATIC PRESSURE SYSTEMS

INTENTIONALLY LEFT BLANK

2nd Edition, Rev 0

11. LIGHTS

11.1. EXTERNAL LIGHTS

P2010 is equipped with the following external lights:

- 2 combined LED NAV/POS/Strobe integrated lights located on RH and LH wing;
- 1 POS/strobe combined light located on the rear (fixed on the rudder);
- 1 combined LED landing and taxi light located on the lower engine cowling.

The following schematic shows the configuration layout for external lights:

FIG.7-17. EXTERNAL LIGHTS

LIGHTS

11.2. INTERNAL LIGHTS

On the cabin ceiling are located four map lights, two in the front area (pilot) and two in the rear area (passengers).

In the central area of the cabin ceiling is located a spot light used to illuminate the pedestal during night flight operations. All ceiling lights are dimmable by a dedicated dimmer.

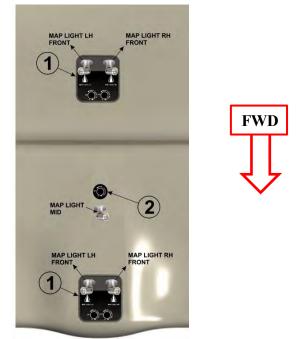


FIG.7-18. CABIN CEILING LIGHTS LAYOUT

The instrument panel can be illuminated by 8 incandescence light strips, all dimmable.

2nd Edition, Rev 0

Section 7 – Airframe and Systems description

LIGHTS

12. PLACARDS

In addition to the limitation placards reported on Section 2, following placards are installed on the aircraft.

Additionally, nearby the placards listed below (English language), directly translated placards in the language of the country in which the airplane is registered can be installed, when required by the specific NAA.

12.1. EXTERNAL PLACARDS

Aircraft Registration Placard:

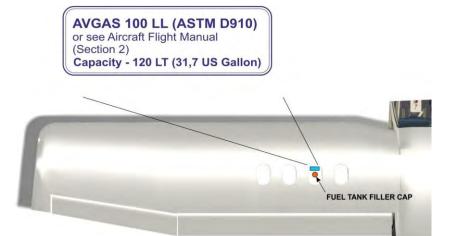
External Power Socket and baggage compartment placards:

Section 7 – Airframe and Systems description

COSTRUZIONI ARTICLE P2010 - Aircraft Flight Manual Page 7 - 29

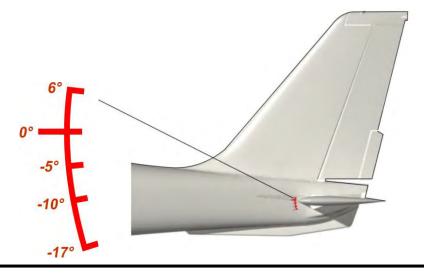
Static Ports:

Lift Point:

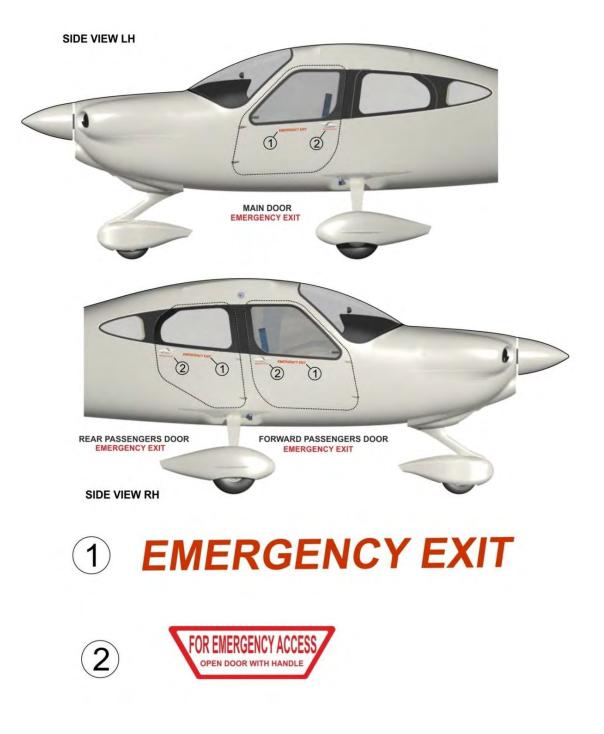

Wheel Fairing "No Step":

2nd Edition, Rev 0

Section 7 – Airframe and Systems description

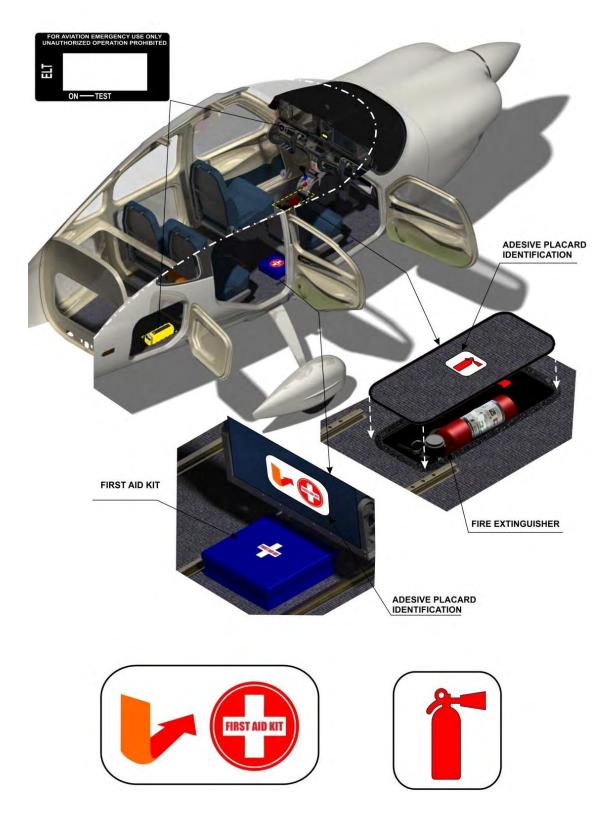

Allowed Fuel Placard:

Tire Pressure placard:



Stabilator degrees placard:

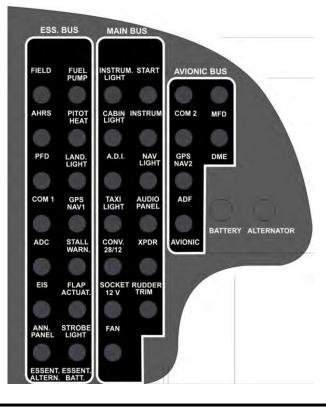
Section 7 – Airframe and Systems description


Emergency exit placards:

2nd Edition, Rev 0

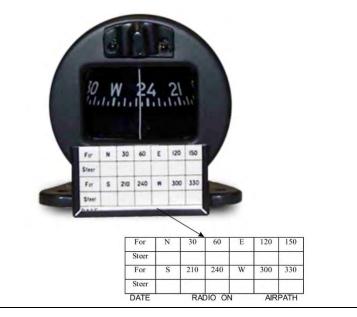
12.2. INTERNAL PLACARDS

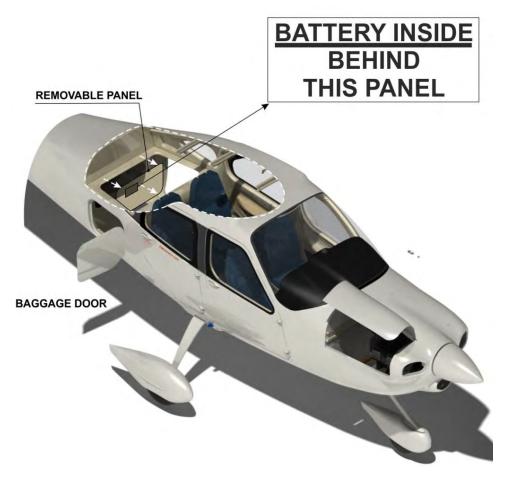
Safety equipment placards:


2nd Edition, Rev 0

Section 7 – Airframe and Systems description

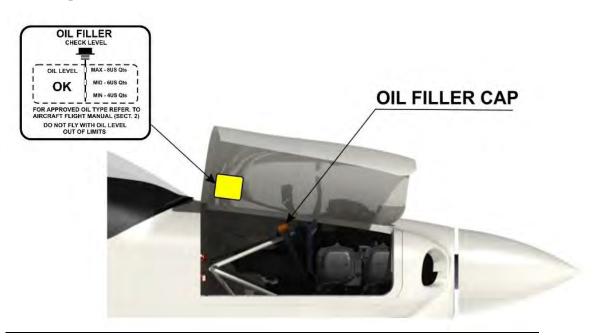
ELT unit position placard:


Breaker Panel placards:


2nd Edition, Rev 0

Section 7 – Airframe and Systems description

Magnetic Compass placard:


Battery Placard:

 2^{nd} Edition, Rev 0

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 7 - 35

Oil Filler placard:

Emergency exit placards

2nd Edition, Rev 0

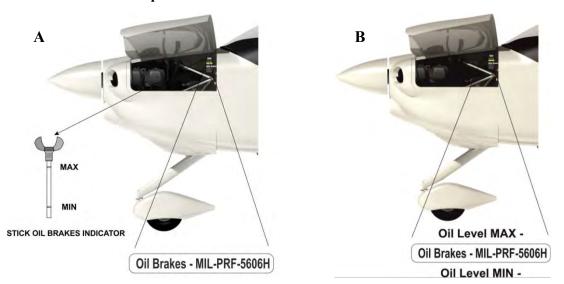
Section 7 – Airframe and Systems description

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page 7 - 36

Pedestal placards:

2nd Edition, Rev 0

Section 7 – Airframe and Systems description


Fuel selector valve and Flap control knob:

Baggage Door opening knob:

Oil brake reservoir placard:

A – Oil brake reservoir placard

B – Oil brake reservoir placard if MOD2010/020 is installed

INTENTIONALLY LEFT BLANK

SECTION 8 – GROUND HANDLING & SERVICE

INDEX

1.	Introduction	3
2.	Aircraft Inspection Intervals	5
3.	Aircraft Changes or Repairs	6
4.	Maintenance	7
4.1	Refuelling	7
4.2	Engine and Brakes Oil level control	7
4.3	Landing gear tires pressure control	9
5.	Engine Cowling Check1	0
5.1	Upper cowling1	0
5.2	Lower Cowling1	0
6.	Ground Handling1	1
6.1	Towing	1
6.2	Parking and Tie-Down1	1
6.3	Mooring 1	3
6.4	Jacking 1	4
6.5	Road Transport1	4
7.	Cleaning And Care1	5
7.1	Windows1	5
7.2	External surfaces1	5
7.3	Propeller1	5
7.4	Engine 1	5
	Internal surfaces 1	
8.	Ice removal1	6

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This section contains factory-recommended procedures for proper ground handling and routine care and servicing. It also identifies certain inspection and maintenance requirements.

It is recommended to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered locally.

 2^{nd} Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

INTRODUCTION

INTENTIONALLY LEFT BLANK

2. AIRCRAFT INSPECTION INTERVALS

Scheduled inspections must be performed in accordance with the instructions addressed on the Aircraft Maintenance Manual. Independently from the aircraft flight hours, an annual inspection has to be performed.

All required inspections are reported in the Aircraft Maintenance Manual.

As far as the scheduled/unscheduled engine maintenance is concerned, refer to the engine manufacturer Maintenance Manual.

Unscheduled inspections/maintenance tasks are necessary when one or more of following conditions occur:

- *1. Emergency landing*
- 2. Breaking / damage of propeller (or in case of simple impact)
- 3. Engine fire
- 4. Lighting damage
- 5. Any type of damage or failure

 2^{nd} Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

AIRCRAFT INSPECTION INTERVALS

3. AIRCRAFT CHANGES OR REPAIRS

Aircraft changes or repairs must be performed in accordance with Aircraft Maintenance Manual and Job cards provided by TECNAM.

 2^{nd} Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

AIRCRAFT CHANGES OR REPAIRS

4. MAINTENANCE

4.1 **REFUELLING**

- Do not perform aircraft refuelling near flames, sparks or similar.
- Avoid fuel contact with the skin: a skin corrosion could occur.
- Make sure that a fire extinguisher is available nearby during refuelling operations.

WARNING

- Make sure that overall aircraft instrumentation is turned OFF before performing the refuelling.
 - Do not operate switches and/or pushbuttons inside the aircraft during refuelling operation; make sure that crew left the aircraft before performing refuelling.
- Make sure that the aircraft is electrically connected to the ground.

4.2 ENGINE AND BRAKES OIL LEVEL CONTROL

- 1. Open the engine cowling (RH)
- 2. Clean the dipstick and soak it in the reservoir
- 3. Remove dipstick and read oil level

RH Engine Cowling

- 4. If required, replenish oil: oil level should be between max. and min. Marks shown on the dipstick
- 5. Close the engine cowling
- 6. Repeat for LH engine cowling side for Oil brakes level control.

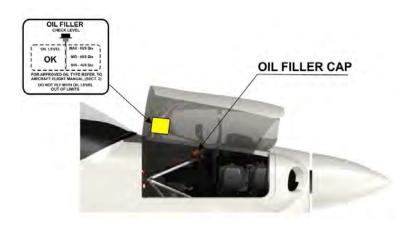


FIG. 8-1. OIL CHECK

2nd Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

MAINTENANCE

EXTECNAM P2010 - Aircraft Flight Manual Page 8 - 8

LH Engine Cowling

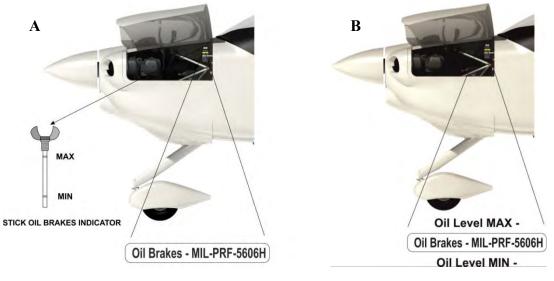


FIG. 8-1 BIS OIL CHECK

A – Oil brake reservoir placard

B - Oil brake reservoir placard if MOD2010/020 is installed

 2^{nd} Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

MAINTENANCE

4.3 LANDING GEAR TIRES PRESSURE CONTROL

For each wheel proceed as follows:

- 1. Remove wheel fairing
- 2. Unscrew the tire cap
- 3. Connect a gauge
- 4. Read the pressure value
- 5. If required, rectify the pressure (nose tire 2.2 Bar / 32 psi, main landing gear tires 2.5 Bar / 36 psi)
- 6. Fit the tire cap
- 7. Install wheel fairing

FIG. 8-2. TIRE PRESSURE PLACARDS

Section 8 – GROUND HANDLING & SERVICE

MAINTENANCE

5. ENGINE COWLING CHECK

5.1 UPPER COWLING

- 1. Parking brake: *ON*
- 2. Fuel selector valve: *OFF*
- 3. Ignition key: *OFF*
- 4. Generator & Master switches: *OFF*
- 5. Unlatch all four butterfly Cam-locks mounted on the cowling by rotating them 90° counter clockwise while slightly pushing inwards.
- 6. Remove engine cowling paying attention to propeller shaft passing through nose.
- 7. To assemble: rest cowling horizontal insuring proper fitting of nose base reference pins.
- 8. Secure latches by applying light pressure, check for proper assembly and fasten Cam-locks.

Butterfly Cam-locks are locked when tabs are horizontal and open when tabs are vertical. Verify tab is below latch upon closing.

5.2 LOWER COWLING

- 1. After disassembling upper cowling, move the propeller to a horizontal position.
- 2. Using a standard screwdriver, press and rotate 90° the two Cam-locks positioned on lower cowling by the firewall.
- 3. Disconnect the ram-air duct from the NACA intake. Pull out the first hinge pin positioned on the side of the firewall, then, while holding cowling, pull out second hinge pin; remove cowling with downward motion.
- 4. For installation follow reverse procedure.

2nd Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

ENGINE COWLING CHECK

6. GROUND HANDLING

6.1 Towing

The aircraft is most easily and safely maneuvered by hand by pushing on wing struts near attachments or by pulling it by its propeller near the axle. A tow bar can be fixed onto nose gear fork. Aircraft may be steered by turning rudder or, for steep turns, by pushing lightly on tail cone to lift nose wheel.

6.2 PARKING AND TIE-DOWN

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake
- 3. Secure pilot control wheel by wrapping the seat belt around it

Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para.6.3.

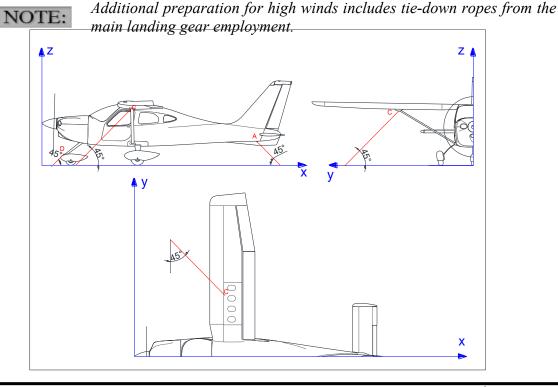
Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

INTENTIONALLY LEFT BLANK

6.3 MOORING

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.


Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind, if practical
- 2. Centre nose wheel and engage parking brake and/or use the wheel chocks

Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In these cases use wheel chocks.

- 3. Secure pilot control stick by wrapping the seat belt around it
- 4. Assure that flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks
- 7. Install protective plugs
- 8. Close and lock cabin doors.
- 9. Secure tie-down cables to the nose gear leg (and to the wings (in correspondence of wing struts) and tail cone tie-down rings at approximately 45 degree with respect to the ground.

 2^{nd} Edition, Rev. 0

Section 8 – GROUND HANDLING & SERVICE

GROUND HANDLING

6.4 JACKING

The aircraft can be lifted up by hydraulic jacks in correspondence of the points shown by external placards.

For the correct procedure please refer to the Maintenance Manual.

6.5 ROAD TRANSPORT

It is recommended to secure tightly all aircraft components onto the cart to avoid damage during transport. Minimum cart size is 9x4 meters. It is suggested to place wings under the aircraft's bottom, secured by specific clamps. Secondary components like the stabilator shall be protected from accidental hits using plastic or other material. For correct rigging and de-rigging procedure, refer to the Maintenance Manual.

 2^{nd} Edition, Rev. 0

7. CLEANING AND CARE

Aircraft surface must be kept clean to ensure expected flight performance. Excessively dirty surfaces can affect normal flight conditions.

7.1 WINDOWS

For windows cleaning, it is allowed the use of acrylic products employed for glass and Plexiglas surfaces cleaning.

7.2 EXTERNAL SURFACES

Aircraft surface is cleaned with soapy water; they are not allowed solvents or alcohol based products. Died insects must be removed using hot water. It is advisable to avoid outside aircraft parking for long periods; it is always con-

venient to keep the aircraft in the hangar.

7.3 **PROPELLER**

To preserve its functionality avoiding wear and corrosion, the propeller manufacturer uses, for external surface painting, an acrylic paint which is resistant to all solvents. In any case it is advisable to clean the propeller using exclusively soapy water.

7.4 ENGINE

Engine cleaning is part of the scheduled maintenance. Refer to the engine manufacturer Maintenance Manual for operating and for planning its cleaning.

7.5 INTERNAL SURFACES

Interiors must be cleaned with a rate of 3 to 6 months. Any object present in the cabin (like pens, lost property, maps etc) must be removed.

The instrumentation as a whole must be cleaned with a humid cloth; plastic surfaces can be cleaned with suitable products.

For parts not easily accessible, perform cleaning with a small brush; seats must be cleaned with a humid cloth.

8. ICE REMOVAL

Anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Section8 – Aircraft Care and Maintenance

SECTION 9 – AFM SUPPLEMENTS

INDEX

IND	EX	1
1.	Introduction	2
2.	Supplements list	3

 2^{nd} Edition, Rev. 0

1. INTRODUCTION

This Section concerns the supplemental manuals of additional (or optional) instrumentation equipping the P2010 and/or information and limitations related to installed equipment configuration or needed to fit local national rules.

2nd Edition, Rev. 0

EXTECNAM P2010 - Aircraft Flight Manual

2. SUPPLEMENTS LIST

Aircraft S/N: Registration marks: Date:							
SUPPLEMENTS LIST FOR AIRPLANES WITH ANALOGUE INSTRUMENTS							
Sup No	7.4	Rev. no.	D	APPLICABLE:			
Sup. No.	Title		Date	YES	NO		
D01	GARMIN GFC700 Autopilot	Ed1rev0	30/10/15				
D02	Variable Pitch Propeller	Ed2rev0	30/10/15				
D03	Alternative avionic configuration	Ed1rev0	22/07/15				
D04	Reserved						
D05	Argentine AFMS	Ed1rev0	30/10/15				
D06	Reserved						
D07	GFC700 Autopilot for Variable Pitch Propeller equipped aeroplanes	Ed1rev0	30/10/15				

INTENTIONALLY LEFT BLANK

Supplement no. D01

AFMS FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND RNAV/RNP NAVIGATION ELIGIBILITY

Record of Revisions

Rev	Revised	ed Description of	Тес	enam Appro	EASA Approval or Under DOA	
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	First Issue	D. Ronca	C. Caruso	M. Oliva	

List of Effective Pages

	Page	Revision
Cover Pages	D01-1 thru 23	<i>Rev.</i> 0
Section 1	1A-13, 1A-16 thru 31	<i>Rev.</i> 0
Section 2	2A-15, 2A-17 thru 20	<i>Rev.</i> 0
Section 3	3A-31 thru 35	<i>Rev.</i> 0
Section 4	4A-27 thru 38	<i>Rev.</i> 0
Section 6	6A-11 thru 12	<i>Rev.</i> 0
Section 7	7A-8 thru 9, 7A-20 thru 21, 7A-27, 7A-33	<i>Rev.</i> 0

Section 9 - Supplements

Supplement no. D01 – GARMIN GFC700 AUTOPILOT INSTALLATION AND RNAV/RNP NAVIGATION ELIGIBILITY

INDEX

2
3
5
8
11
14
16
18
20
22

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin GFC 700 autopilot device interfacing Garmin G1000.

It is the owner's responsibility to replace the mentioned pages in accordance with the instructions herein addressed section by section.

Ed. 1, Rev. 0

INTENTIONALLY LEFT BLANK

Ed. 1, Rev. 0

Supplement D01: pages replacement instructions

SECTION 1 – GENERAL

Make sure you first applied instructions reported on the basic AFM, Section 1 General

According to A/C configuration apply following pages replacement:

Supplement D01 GENERAL page		AFM Section 1 page
1A-13	REPLACES	1-13 of basic AFM, Section 1
1A-16 thru 31	REPLACES	1-16 of basic AFM, Section 1

INTENTIONALLY LEFT BLANK

Ed. 1, Rev. 0

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual

Autopilot acronyms

AC	Advisory Circular	GNSS	Global Navigation Satellite System
A/C	Aircraft	GP	Glide Path
ADC	Air Data Computer	GPS	Global Position System
ADF	Automatic Direction Finder	GS	Glide Slope
ADI	Attitude Directional Indicator	GSA	Garmin Servo Actuator
AFCS	Automatic Flight Control Systyem	GSM	Garmin Servo Mount
AHRS	Attitude Heading Reference System	HDG	Heading
ALT	Altitude	HSDB	High Speed Data Bus
ALTS	Altitude Selector	IAU	Integrated Avionic Unit
AMPS	Ampere	LOC	Localizer
A/P	Autopilot	LRU	Line Repleaceable Unit
APR	Approach	LVL	Level
ARP	Aerospace Recommended Practice	MAG	Magnetometer
ASI	Air Speed Indicator	MET	Manual Electric Trim
ВС	Back Course	MFD	Multi-Function Display
CAS	Caution Advisory System	NAV	Navigation
CDI	Course Deviation Indicator	OAT	Outside Air Temperature
CS	Certification Specifications	PFD	Primary Flight Display
CWS	Control Wheel steering	PFI	Primary Flight Information
DC	Direct Current	PFT	Pre Flight Test
DME	Distance Measuring Equipment	PWM	Pulse Width Modulation
EIS	Engine Indication System	SAE	SAE International
ESP	Electronic Stability and Protection	TDM	Time Division Multiplexing
FD	Flight Director	USP	Under Speed Protection
FLC	Flight Level Change	VHF	Very-High Frequency
GA	Go Around	VNV	Vertical Navigation
GDU	Garmin Display Unit	VS	Vertical Speed
GIA	Garmin Integrated Avionics	XPDR	Transponder

Page 1A-13

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY

P2010 - Aircraft Flight Manual

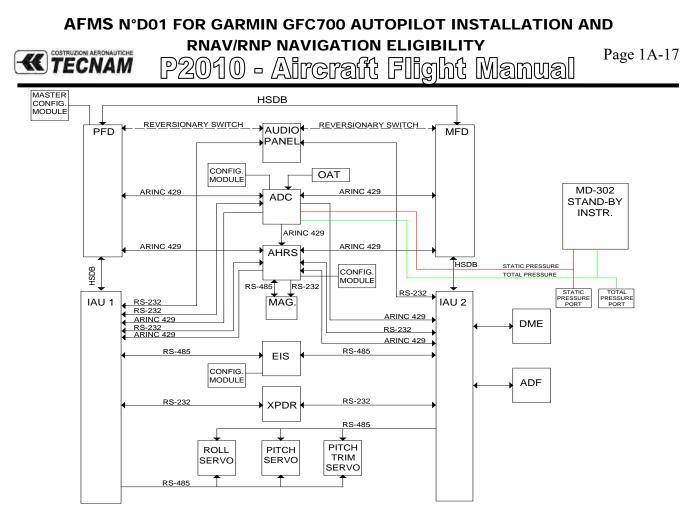
12 AUTOPILOT DESCRIPTION

P2010 aircraft is equipped, as an optional equipment, with an integrated 2-axis autopilot suite manufactured by Garmin and identified as GFC 700. This autopilot suite was designed as an option for the G1000 integrated flight deck. The autopilot is controlled via dedicated keys grouped in a control panel located on the MFD. The installed MFD display is different with respect to standard P2010 configuration since it is GDU 1044.

The autopilot suite installed on P2010 is based on the following configuration:

- 1 Roll servo
- 1 Pitch servo
- 1 Pitch Trim servo

Neither yaw axis nor rudder trim tab control is provided.


The autopilot is connected to electric system through the below listed circuit breakers connected to the avionics bus:

- 1) A/P (5A)
- 2) PITCH TRIM (3A)

The installed servos are capstan type and are composed of two main components:

- A servo motor
- A servo capstan including the servo clutch

The following block diagram describes the avionic system installed on P2010 and its interconnections with the autopilot servos:

The multifunction display (MFD) provides the pilot with a dedicated set of keys for autopilot control (see red frame in the below picture).

The roll servo is located under the pilot seat and is fixed to a/c structure using a dedicated mount. Pitch and pitch trim servos are located in the tail cone and are installed on a dedicated mount which hosts both the servos.

Section 1 – General AUTOPILOT DESCRIPTION

Ed. 1, Rev. 0

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND **RNAV/RNP NAVIGATION ELIGIBILITY** Page 1A-18

P2010 - Aircraft Flight Manual

GFC 700 is an integrated autopilot since it uses several information provided by other units embodied in the G1000 avionics suite in order to compute the maneuvers to be performed by the aeroplane and actuate them. The below table lists the functions which are required in order to have the GFC 700 operational and the G1000 LRUs responsible for providing it:

LRU	-	ADC					CAP-
Function	. ,	(GDC 74X)	(GRS 77)	(GMU 44)	(GIA 63W)	TOR (GSA 8X)	STAN (GSM 8X)
AFCS mode select	1						
buttons	·						
Display of the AFCS mode annuncia-	\checkmark						
tions and flight director command	(PFD NORMAL)						
bars.	(MFD REVER-						
	SIONARY)						
Attitude/Heading information			~	~			
Air data information		\checkmark					
Navigational database Parameters	\checkmark						
GPS/WAAS, VOR, and ILS naviga-							
tional data					v		
Mode logic, flight director computa-							
tions, and servo management					v		
Autopilot computations and monitor-						~	
ing						•	
Aircraft control							1
surface Actuation							÷
Trim functionality						\checkmark	

In control of the roll axis, the autopilot senses turn rate, as well as closure rate to the selected course, along with the non-rate quantities of heading error, course error and course deviation indication.

In control of the pitch axis, the autopilot senses vertical speed, acceleration, and closure rate to the selected glideslope, along with the non-rate quantities of altitude and glideslope deviation indication.

The "autotrim" function senses when the aircraft needs to be trimmed about the pitch axis, and responds by driving the trim servo in the proper direction to provide trim.

12.1 GDU 1044 (MFD)

GDU 1044 MFD unit can display as default engine parameters and moving map information, along with other information that can be selected by the pilot (see the first figure below); when reversionary mode is active it will display flight parameters (in the form of PFD with the left strip engine information, as can be seen in the second figure below). It is the user interface for P2010 avionics suite. GDU 1044 unit replaces the GDU 1040 unit on instrument panel RH side (MFD).

GDU 1044 (MFD)

Reversionary mode:

- In the event of a single display failure the system is able to automatically switch the critical information including flight and engine parameters on the remaining display presenting them in a compact view. In the event of a failure of the automatic switch logic, the pilot can easily force the reversionary mode by pressing the red button on the bottom of the audio panel thus getting both flight and engine parameters information, necessary for continued safe flight, on the remaining display.

GDU 1044 (MFD) in reversionary mode

Section 1 – General AUTOPILOT DESCRIPTION

Ed. 1, Rev. 0

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND RNAV/RNP NAVIGATION ELIGIBILITY

E P2010 - Aircraft Flight Manual

Autopilot control panel

The GDU1044 includes a set of additional softkeys dedicated to the control of Autopilot system.

The following dedicated AFCS keys are located on the bezel of the MFD (refer picture below):

- 1) AP Key: Engages/ disengages the autopilot
- 2) FD Key: Activates/deactivates the flight director only
- 3) NAV Key: Selects/deselects Navigation Mode
- 4) ALT Key: Selects/deselects Altitude Hold Mode
- 5) VS Key: Selects/deselects Vertical Speed Mode
- 6) FLC Key: Selects/deselects Flight Level Change Mode
- 7) HDG Key: Selects/deselects Heading Select Mode
- 8) APR Key: Selects/deselects Approach Mode
- **9) VNV Key:** Selects/deselects Vertical Path Tracking Mode for Vertical Navigation flight control
- 10) NOSE UP/ NOSE DN Keys: Control the mode reference in Pitch Hold, Vertical Speed and Flight Level Change modes

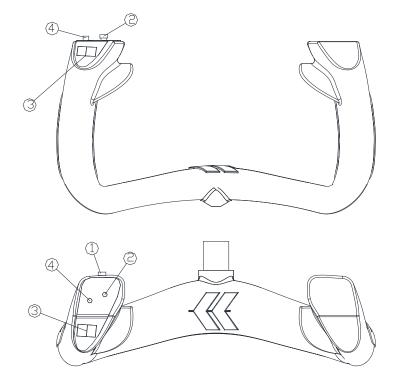
Autopilot control panel

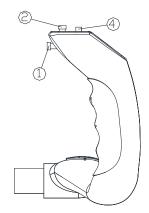
Page 1A-20

12.2 PILOT CONTROL WHEEL AND THROTTLE BUTTONS

On the left side of pilot's and copilot's control wheels there are two PTT switches (the one on pilot control wheel is shown below as (1)) that, when pushed, allow radio transmission. These switches are momentaneous ones thus acting in such a way that when they are released the active COM device returns to the non-transmitting state. These switches are already installed in the basic aircraft which is not equipped with the autopilot.

The following additional dedicated AFCS controls are located on the pilot control wheel, separately from the MFD, and on the throttle handle:


- AP DISC Switch: Disengages the autopilot and interrupts pitch trim operation This switch may be used to mute the aural autopilot disconnect alert.
- **AP Trim Switch:** Used to command manual electric trim. This composite switch is split into left and right sides. The left switch is the ARM contact and the right switch controls the DN (forward) and UP (rearward) contacts. The AP TRIM ARM switch can be used to disengage the autopilot and to acknowledge an autopilot disconnect alert and mute the associated aural tone. Manual trim commands are generated only when both sides of the switch is active separately for more than three seconds, MET function is disabled and 'PTRM' is displayed as the AFCS Status Annunciation on the PFD. The function remains disabled until both sides of the switch are inactivated.
- **CWS Button:** While pressed, the Control Wheel Steering allows manual control of the aircraft while the autopilot is engaged and synchronizes the flight director's Command Bars with the current aircraft pitch (if not in Glideslope Mode) and roll (if in Roll Hold Mode). Upon release of the CWS Button, the flight director may establish new reference points, depending on the current pitch and roll modes. CWS operation details are discussed in the flight director modes section.


TO/GA Switch:The GA Switch is located on the throttle handle.Go Around and Takeoff modes are coupled pitch and roll
modes and are annunciated as both the vertical and lateral
modes when active. In these modes, the flight director
commands a constant set pitch attitude and keeps the
wings level. The GA Switch is used to select both modes.
The mode entered by the flight director depends on wheth-
er the aircraft is on the ground.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND **RNAV/RNP NAVIGATION ELIGIBILITY** Page 1A-22

P2010 - Aircraft Flight Manual

The above mentioned AFCS controls are depicted in the below figures.

where:

- 1) PTT switch
- 2) AP DISC Switch
- 3) AP Trim Switch
- 4) CWS Button

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND Page 1A-23 **RNAV/RNP NAVIGATION ELIGIBILITY**

P2010 - Aircraft Flight Manual

13 AUTOPILOT FUNCTIONS AND FEATURES

GFC 700 autopilot suite is deeply integrated with Garmin G1000 avionics suite which integrates both the a/p controls and the sensors providing the required data to the servos.

The GFC 700 AFCS is equipped with the following main operating functions:

- Flight Director (FD) Flight director commands are displayed on the PFD. The flight director provides:
 - ✓ Command Bars showing pitch/roll guidance
 - ✓ Pitch/roll mode selection and processing
 - ✓ Autopilot communication
- Autopilot (AP) Autopilot operation occurs within the pitch, roll, and pitch trim servo and provides servo monitoring and automatic flight control in response to flight director steering commands, AHRS attitude and rate information, and airspeed.
- **Manual Electric Trim (MET)** The pitch trim servo provides manual electric trim capability when the autopilot is not engaged.
- **ESP** (Electronic Stability & Protection) keeps the aircraft within well defined operational limits thus preventing the pilot to operate the aircraft outside a specific envelope when it is being hand flown. This feature only operates when autopilot is not engaged and its operation is mutually exclusive with autopilot operation.
- **USP** (Underspeed Protection) is a flight director function that reacts to underspeed conditions in a way that allows the autopilot to remain engaged but prevents the airplane from stalling.

13.1 ESP

Garmin GFC 700 is equipped with an envelope protection feature referred as ESP (Electronic Stability & Protection). Electronic Stability and Protection continuously monitors the aircraft. The system works by applying a correcting force to the controls in order to nudge pilot to avoid extreme attitudes that may bring the aircraft, if not corrected, to exceed normal flying envelope.

This software feature aims to provide protection against aircraft operation outside a desired flight envelope. ESP will maintain the desired operating envelope, defined at autopilot development time, by automatically engaging one or more servos when the aircraft is near the operating limit and nudging pilot to come back to nominal operating envelope. While ESP utilizes the same sensors, processors, and actuators as the GFC 700 autopilot, it is basically a separate function. ESP can be overpowered by the pilot and can be temporarily disabled using the AP disconnect or CWS switches. It functions independently of the aircraft's autopilot system (although it uses the same control servos), so it basically operates "in background" whenever the pilot is hand-flying the airplane.

The ESP feature will only function with GPS available, A/P MASTER SWITCH ON (but autopilot not engaged) and aircraft above 200ft AGL.

ESP enabling:

As a standard, ESP will automatically set to enable at power-up.

The system is configured in order to allow the pilot to disable ESP (or re-enable it if previously disabled after power up) via the AUX – SYSTEM SETTINGS page on MFD.

If ESP has been disabled via MFD, it will automatically be set to ON upon any battery/power reset.

ESP function uses the same servos that provide autopilot functionality while autopilot is not engaged, as such, if power is cut from these servos both autopilot and ESP functions will be unavailable.

Based on the above if "AUTOPILOT MASTER" is set to OFF, power to servos is cut irrespectively of their mode of operation (autopilot or ESP).

The pilot can interrupt ESP by pressing and holding either the Control Wheel Steering (CWS) or Autopilot Disconnect (AP DISC TRIM INTRPT) switch. Upon releasing the CWS or AP DISC TRIM INTRPT switch, ESP force will again be applied, provided aircraft attitude and/or airspeed are within their respective engagement limits.

ESP can be enabled or disabled on the AUX-SYSTEM SETUP 2 Page on the MFD.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND RNAV/RNP NAVIGATION ELIGIBILITY Page 1A-26 P2010 - Aircraft Flight Manual

To enable or disable ESP:

- 1) Turn the large FMS Knob to select the AUX Page Group.
- 2) Turn the small FMS Knob to select the System Setup Page.
- 3) If necessary, select the SETUP 2 Softkey to display the AUX-SYSTEM SETUP 2 Page.If the AUX-SYSTEM SETUP 2 is already displayed, proceed to step 4.
- 4) Press the FMS Knob to activate the cursor.
- 5) Turn the large FMS Knob to place cursor in the STABILITY & PRO-TECTION field.
- 6) Turn the small FMS Knob to select 'ENABLE' or 'DISABLE'.
- 7) Press the FMS Knob to remove the cursor.

ESP engagement and operation:

ESP is automatically enabled on system power up.

NOTE

ESP unavailability and/or failure is indicated to the pilot on PFD by the advisory "ESP not available" on alert window.

ESP will turn OFF upon loss of both GPS. The ADVSY "ESP OFF" will appear on the alert window in case of loss of both GPS.

13.1.1 PITCH MODE

Pitch attitude boundaries are set based on P2010 aircraft performances. Since pitch ESP augments the natural aircraft longitudinal stability, no special simbology is required.

Value that have been set-up for the P2010 are as follows:

Nose above the horizon:

Engagement low threshold: $+15^{\circ}$ Engagement upper threshold: $+18^{\circ}$ Lower disengage threshold: $+12^{\circ}$

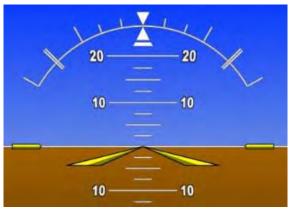
Nose below the horizon:

Engagement low threshold: -15° Engagement upper threshold: -20° Lower disengage threshold: -13°

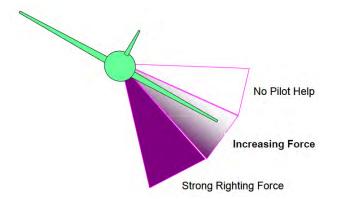
ESP utilizes electronic torque and speed commands to augment the aircraft's stability: it uses an Electronic Torque Limit (ETL) and an Electronic Speed Limit (ESL) to limit the maximum authority of the ESP function. ESP is inactive when the pitch attitude is within the positive and negative engagement limits defined in the certification gain file. When the aircraft reaches the engagement limit, ESP ramps up the servo torque command to adjust the aircraft back toward zero pitch attitude. ESP uses a rate command to drive the attitude back to the nominal range and does not try to control to a specific attitude. As the pitch attitude returns to the nominal range, the torque and pitch rate are reduced until the aircraft reaches the disengagement limit at which time ESP turns off. The disengagement threshold is sized so that the transition from ESP being active to being inactive is transparent to the pilot (no transient when ESP turns off).

If, when ESP engages, the aircraft continues to pitch away from the nominal attitude range the torque command will increase with increasing pitch deviation. Above the upper disengagement limit specified in the certification gain file ESP will be disabled.

13.1.2 ROLL MODE


Roll mode is similar to pitch mode and also utilizes configurable gain file parameters to define engagement and disengagement limits as well as the speed and torque curves.

The engagement and disengagement attitude limits are displayed with double hash marks on the roll indicator when ESP is available and /or active. The lack of double hash marks above 200 ft AGL (when autopilot is not connected) is a clear indication that ESP is not available.


Values for the symmetric roll attitude limits are as follows:

Engagement low threshold: $+/-45^{\circ}$ Engagement upper threshold: $+/-75^{\circ}$ Lower disengage threshold: $+/-30^{\circ}$

Electronic stability and protection action starts at the predetermined bank angle. Since crossing this bank angle results in a change in aircraft stability (and therefore handling characteristics) indications of this boundary are provided to the pilot.

When ESP is inactive (roll attitude within nominal limits) only the engagement limits are displayed in order to reduce clutter on the roll indicator. As the bank angle is increased, a region of an increasing force as a function of bank angle is entered. The envelope protection system adds bank stability in this region. As the bank angle is increased further, a constant force is applied to right the airplane. See the below figure for an example of the ESP engagement limits.

VMO

Exceeding VMO will result in ESP applying force to raise the nose; when the high speed condition is remedied, ESP force is no longer applied.

Engage Limit: 165 KIAS Upper Limit: 168 KIAS Lower disengage Limit: 160 KIAS

13.2 USP

Underspeed Protection (USP) is a flight director function that reacts to underspeed conditions, designed to discourage aircraft operation below minimum established airspeeds.

Pilot will be warned of impending low speed conditions, and if no action will be taken FD will directly react in a way that allows the A/P to remain engaged but prevents the airplane from stalling.

USP function has been developed in order to warn pilot of impending low speed conditions, and if no action will be taken FD will directly react in a way that allows the Autopilot to remain engaged but prevents the airplane from stalling.

Pilot action is still expected at first warning of low airspeed conditions in order to prevent a low speed conditions, so to maintain normal flight.

When autopilot is engaged USP will provide the pilot with aural/visual cues to make him aware of an impending stall and will drive the servos in order to prevent stall.

When autopilot is not engaged and only Flight director is active, USP will provide the pilot with aural/visual cues to make him aware of an impending stall but servos will not be driven.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual Page 1A-29

NAV1 109.00 ↔ 113.00 NAV2 109.00 ↓ 113.00 HDG ← AP YD ALT 2000 FT 20 = 20100 = 1010 = 1010 = 10

How Underspeed Protection functions depends on which vertical flight director mode is selected.

For the purpose of this discussion, the vertical flight director modes can be divided into two categories:

- It is important to maintain altitude for as long as possible (altitudecritical modes).
- Maintaining altitude is less crucial (non-altitude critical modes).

TECNAM

If USP engages while Autopilot is in PIT or VS mode, and power is abruptly set to full throttle, pilot may expect a slight nose up tendency that will be quickly counteracted by autopilot. This is a normal behaviour, the slight nose up tendency in this case will be due to abrupt power advance, but will be immediately damped by Autopilot (with PIT or VS turning green on the annunciation panel).

USP engagement is a consequence of autopilot failing to properly monitoring A/P and aircraft behaviour. This is mainly caused by a pilot request that cannot be fulfilled due to lack of power coupled with unattainable pitch input.

Pilot need to continuously monitor autopilot performance, while checking that mode selections are compatible with aircraft performance.

If Autopilot is engaged in FLC mode, FLC mode will downgrade to PIT mode when in USP for more than 10 seconds.

If USP engages while in ALT mode, upon USP disengagement FD will command bars to regain pre-selected altitude (altitude selected before USP engagement). Pilot must monitor A/P to check if previous pre-selected altitude is still attainable with energy available. It is recommended in this case to preselect a new altitude in order to speed-up energy management and recover from slow speed conditions.

When USP becomes active, expect a small FD adjustment due to reaction to very low speed condition.

13.2.1 ALTITUDE CRITICAL MODES (ALT, GS, GP, TO, GA, FLC)

When the airspeed trend vector (dedicated algorithm) reaches 65 +/- 2 KIAS a single aural "AIRSPEED" will sound, alerting the pilot to the impending underspeed condition, which requires pilot action.

If the aircraft decelerates to stall warning and a speed of 65 KIAS is reached, the lateral and vertical flight director modes will change from active to armed and the autopilot will provide input causing the aircraft to pitch down and the wings to level.

The aural "AIRSPEED" alert will sound every five seconds.

If aircraft is unintentionally decelerated to 65 KIAS, a MINSPD annunciation posts above the airspeed tape on PFD in alternating amber and black text. A red "UNDERSPEED PROTECT ACTIVE" annunciation will appear to the right of the vertical speed indicator. USP will drive the pitch down until the indicated airspeed increases above 70 KIAS or stall warning turns off, plus two knots (whichever comes first).

When USP disengages, autopilot will cause the aircraft to pitch up until recapturing the vertical reference (vertical and lateral flight director modes will change from white armed to green active).

13.2.2 NON ALTITUDE CRITICAL MODES (VS, VNAV, IAS)

When the **airspeed trend vector** (dedicated algorithm) reaches 65 +/- 2 KIAS a single aural "AIRSPEED" will sound, alerting the pilot to the impending underspeed condition, which requires pilot action.

If the aircraft is allowed to decelerate to an IAS below the minimum commandable autopilot airspeed (65 Kts for P2010), a red "UNDERSPEED PROTECT AC-TIVE" annunciation appear to the right of the vertical speed indicator.

Vertical flight director mode will change from active to armed, Flight Director and autopilot will command the aircraft to pitch down until reaching a pitch attitude at which IAS equals at least the minimum commandable autopilot airspeed, avoiding the development of a stall condition.

When airspeed increases (as a result of adding power/thrust) to an IAS above 70 KIAS, USP will then disengage and the autopilot will command the aircraft to pitch up until recapturing the vertical reference (vertical vertical flight director mode will switch from white armed to green active).

INTENTIONALLY LEFT BLANK

Supplement D01: pages replacement instructions

SECTION 2 – LIMITATIONS

Make sure you first applied instructions reported on the basic AFM, Section 2 Limitations

According to A/C configuration apply following pages replacement:

Supplement D01 LIMITATIONS page		AFM Section 2 page
2A-15	REPLACES	2-15 of basic AFM, Section 2
2A-17 thru 20	REPLACES	2-17 of basic AFM, Section 2

INTENTIONALLY LEFT BLANK

P2010 - Aircraft Flight Manual

19 LIMITATIONS PLACARDS

K TECNAM

Hereinafter limitation placards, related to the operating limitations, are placed in plain view on the pilot.

19.1 SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

19.2 OPERATING LIMITATIONS

On the central side of the instrument panel, the following placard is placed reminding the observance of aircraft operating limitations according to installed equipment configuration, see KOEL paragraph 18.

> THIS A/C CAN BE OPERATED ONLY IN NORMAL CATEGORY DAY-NIGHT-VFR-IFR (WITH REQUIRED EQUIPMENT)IN NON-ICING CONDITIONS. NO AEROBATICS MANOEUVRES, INCLUDING SPINNING, APPROVED. FOR OPERATIONAL LIMITATIONS REFER TO FLIGHT MANUAL

When the Autopilot is installed, next placard is added on the instrument panel to the right of the preceding one:

OPERATING LIMITATIONS FOR P2010 GARMIN GFC700 AUTOPILOT						
 Pilot with seat belt fastened must be seated at the left pilot position during A/P Ops 	 Min. alt. AGL for A/P Operations are: 					
 Do not use A/P during take-off and landing 	Cruise and descent: 800 ft AGL					
· For RNAV/RNP departures, navigation and approaches pilot must confirm GPS, RAIM and	· Climb after T/O and during non-precision approaches: 400 ft AGL					
SBAS system availability, in order to comply with appropriate minimum requirements.	Cat.1 ILS Approches only (200ft AGL)					

19.3 NO SMOKING PLACARD

On the right hand side of the instrument panel the following placard is placed reminding the observance for "no smoking":

Page 2A-15

20 AUTOPILOT LIMITATIONS

NOTE

The "Garmin G1000 Pilot's Guide for the Tecnam P2010" (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version) must be carried in the aircraft and made available to the pilot at all time.

Following operating limitations shall apply when the aircraft is equipped with Garmin GFC700 Autopilot:

- The Autopilot is certified for Category I ILS Approaches [with a decision height not lower than 200 ft AGL (61 m)]
- During Autopilot operation, a pilot with seat belt fastened must be seated at the left pilot position
- Maximum speed for Autopilot operation is 150 KIAS
- Do not use autopilot for airspeed below 70 KIAS
- Minimum approach speed is 70 KIAS
- The autopilot must be OFF during takeoff and landing
- Minimum altitude AGL for Autopilot operation is:
 - b. Cruise and Descent: 800 ft (244 m) AGL
 - c. Climb after Take-off: 400 ft (122 m) AGL
 - d. ILS CAT I precision approach: 200 ft (61 m) AGL
- Use of the autopilot or manual electric trim system is prohibited before the satisfactory completion of the Pre-flight procedure.
- Autopilot USP function requires flaps indicators lights in the cockpit to be efficient for correct operation. If one flap indicator light gets inoperative during flight, USP function is not assured.

21.1 GENERAL GNSS NAVIGATION EQUIPMENT APPROVALS

The GPS/GNSS receivers in the G1000 System are certified to TSO C129a Class A1 and ETSO C129a Class A1 or TSO C145a and ETSO 2C145a.

The Garmin GNSS navigation system as installed in this airplane complies with the requirements of AC 20-138A, JAA TGL-10 and AMCs 20-4A, 20-27A and 20-28.

It's approved for navigation using GPS and SBAS (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) for IFR en route, terminal area, precision and non-precision approach operations.

The G1000 System meets the requirements for GPS/GNSS as a Primary Means of Navigation for Oceanic/Remote Operations (RNP-10) per AC 20-138C, FAA Notice N8110.60, FAA Order 8400-12C and FAA Order 8700-1. Both GPS/GNSS receivers are required to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor.

In accordance to ICAO doc 9613 (Fouth Edition -2013), the G1000 System has been shown to be eligible for:

- B-RNAV (RNAV-5) per AMC 20-4A.
- RNAV1 / P-RNAV (RNP-1) Enroute and Terminal navigation per JAA TGL-10 Rev.1.
- RNP APCH LNAV/VNAV per EASA AMC 20-27. This does not include APV BARO-VNAV operation which is not cleared.
- LPV with SBAS per EASA AMC 20-28.

provided that the G1000 is receiving usable navigation information from at least one GPS receiver.

21.2 G1000 GNSS (GPS/SBAS) NAVIGATION SYSTEM LIMITA-TIONS

The pilot must confirm at system initialization that the Navigation database is current. Navigation database is expected to be current for the duration of the flight.

If the AIRAC cycle will change during flight, the pilot must ensure the accuracy of navigation data, including suitability of navigation facilities used to define the routes and procedures for flight. If an amended chart affecting navigation data is published for the procedure, the database must not be used to conduct the procedure.

GPS/SBAS based IFR enroute, oceanic, and terminal navigation is prohibited unless the pilot verifies and uses a valid, compatible, and current Navigation database or verifies each waypoint for accuracy by reference to current approved data.

Discrepancies that invalidate a procedure must be reported to Garmin International. The affected procedure is prohibited from being flown using data from the Navigation database until a new Navigation database is installed in the airplane and verified that the discrepancy has been corrected.

Contact information to report Navigation database discrepancies can be found at www.Garmin.com>Support>Contact Garmin Support>Aviation. Pilots and operators can view navigation data base alerts at www.Garmin.com > In the Air> Nav-Data Alerts.

For flight planning purposes, in areas where SBAS coverage is not available, the pilot must check RAIM availability.

Within Europe, RAIM availability can be determined using the G1000 WFDE Prediction program or Europe's AUGER GPS RAIM Prediction Tool at http://augur.ecacnav.com/augur/app/home.

This requirement is not necessary if SBAS coverage is confirmed to be available along the entire route of flight.

The route planning and WFDE prediction program may be downloaded from the GARMIN G1000 website on the internet. For information on using the WFDE Prediction Program, refer to GARMIN WAAS FDE Prediction Program, part number 190-00643-01, WFDE Prediction Program instructions'.

For flight planning purposes for operations within European B-RNAV and P-RNAV airspace, if more than one satellite is scheduled to be out of service, then the availability of GPS integrity RAIM shall be confirmed for the intended flight (route and time).

In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended flight, the flight should be delayed, cancelled, or re-routed on a track where RAIM requirements can be met.

Both GPS navigation receivers must be operating and providing GPS navigation guidance to the PFD for operations requiring RNP-4 performance.

Whenever possible, RNP and RNAV routes including Standard Instrument Departures (SIDs) and Obstacle Departure Procedures (ODPs), Standard Terminal Arrival (STAR), and enroute RNAV "Q" and RNAV "T" routes should be loaded into the flight plan from he database in their entirety, rather than loading route waypoints from the database into the flight plan individually. Selecting and inserting individual named fixes from the database is permitted, provided all fixes along the published route to be flown are inserted. "GPS", "or GPS", and "RNAV (GPS)" instrument approaches using the G1000 System are prohibited unless the pilot verifies and uses the current Navigation database. GPS based instrument approaches must be flown in accordance with an approved instrument approach procedure that is loaded from the Navigation database.

Not all published Instrument Approach Procedures (IAP) are in the Navigation database.

Pilots planning on flying an RNAV instrument approach must ensure that the Navigation database contains the planned RNAV Instrument Approach Procedure and that approach procedure must be loaded from the Navigation database into the FMS flight plan by its name.

The navigation equipment required to join and fly an instrument approach procedure is indicated by the title of the procedure and notes on the IAP chart.

Use of the GARMIN G1000 GPS/SBAS receivers to provide navigation guidance during the final approach segment of an ILS, LOC, LOC-BC, LDA, SDF,MLS or any other type of approach not approved for "or GPS" navigation is prohibited. When using the G1000 VOR/LOC/GS receivers to fly the final approach segment, VOR/LOC/GS navigation data must be selected and presented on the CDI.

SID/STAR

The use of SIDs and STARs stored in GPS data base is only authorized, if the pilot has checked that GPS procedure corresponds to the one given in the official documentation (coordinates of various points and paths between points). COSTRUZION ARTICLE P2010 - Aircraft Flight Manual

INTENTIONALLY LEFT BLANK

Section 9 – Supplements Supplement no. D01 – GARMIN GFC700 AUTOPILOT INSTALLATION AND RNAV/RNP NAVIGATION ELIGIBILITY Supplement D01: pages replacement instructions

SECTION 3 - EMERGENCY PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 3 Emergency Procedures

According to A/C configuration apply following pages replacement:

Supplement D01 EMERGENCY PROCEDURES		AFM Section 3	
page		page	
3A-31 thru 35	REPLACES	*Added at the end of Section 3 of basic AFM	

INTENTIONALLY LEFT BLANK

Page 3A-31

12 AUTOPILOT EMERGENCY PROCEDURES

NOTE

In the event of autopilot malfunction, or when the system is not performing as expected or commanded, take immediately the aircraft control disconnecting the autopilot which must be set inoperative until the failure has been identified and corrected.

12.1 AUTOPILOT HARDOVER OR FAILURE TO HOLD THE SELECTED HEADING

In case of A/P hardover or failure to hold selected heading, apply following procedure:

Accomplish items 1 and 2 simultaneously:

1. Airplane control wheel	GRASP FIRMLY and OVERPOWER if necessary to regain aircraft control
2. AP DISC/TRIM INTR switch	PRESS
3. AP MASTER SWITCH	OFF
4. AP Circuit Breaker	PULL

NOTE

Following an A/P or MET system malfunction, do not engage the autopilot until the cause of the malfunction has been corrected.

When Autopilot is disconnected, it may be necessary operate the pitch trim through either the Manual Electric Trim Switch or the Trim Wheel.

12.2 ALTITUDE LOST DURING A PITCH AXIS AUTOPILOT MALFUNC-TION AND RECOVERY

Following table addresses the altitude lost during a pitch axis malfunction and recovery for each reported flight phase:

Flight phase	Altitude loss
Climb	90 ft
Cruise	200 ft
Descent	170 ft
Maneuvering	210 ft
Approach	70 ft

12.3 ELECTRIC TRIM MALFUNCTION

In case of Electric Trim malfunction (either in AP Autotrim mode or when manually operated through the Manual Electric Trim Switch), apply following procedure:

1.	AP DISC/TRIM INTR switch	PRESS and HOLD
2.	TRIM MASTER SWITCH	OFF
3.	TRIM Circuit Breaker	PULL
4.	AP DISC/TRIM INTR switch	RELEASE

When Autopilot is disconnected because of a pitch trim malfunction, hold the control wheel firmly.

When electric trim is disconnected, it is necessary operate the pitch trim through the Trim Wheel.

NOTE

When electric trim is disconnected, Autopilot system can be operated both in pitch and roll modes; nevertheless, when a pitch mode (ALT HOLD, VS, GS) is engaged, the Autopilot will provide an annunciation whenever it is necessary to manually trim the aircraft about the pitch axis using the Trim Wheel. Make reference to "Garmin G1000 Integrated Avionic System Pilot's Guide" for Tecnam P2010 (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version).

Ed. 1, Rev. 0

12.4 AMPLIFIED EMERGENCY PROCEDURES

The following observations provide additional information for more complete understanding of the recommended course(s) of action in emergency situations.

- 1. An autopilot or autotrim malfunction occurs when there is an uncommanded deviation in the airplane flight path or when there is abnormal control wheel or trim wheel motion. In some cases, (especially for autopilot trim), there may be little to no airplane motion, but the PITCH TRIM annunciator (LH side of PDF) may come on.
- 2. The primary concern in reacting to an autopilot or autopilot trim system malfunction, or to an automatic disconnect of the autopilot, is to keep control of the airplane. Immediately grasp the control wheel and push and hold the A/P DISC/TRIM INT switch throughout the recovery. Manipulate the controls as required to safely keep the airplane within all of its operating limitations. Elevator trim should be used manually as needed to relieve control forces.

Switch the AP MASTER SWITCH to OFF and, when time is available after aircraft recovery, open (pull) the AUTOPILOT circuit breaker on the lower right hand corner of the circuit breaker panel to completely disable the autopilot system.

3. A MET (Manual Electric Trim) system malfunction (without pilot actuation of the manual electric trim switches) may be recognized by the PITCH TRIM annunciator coming on or by unusual trim wheel motions with the autopilot not engaged. As with an autopilot malfunction, the first concern following a manual electric trim system malfunction is to keep the airplane in control. Grasp the control wheel firmly and push and hold down the A/P DISC/TRIM INT switch. Switch the trim cut-out switch to OFF.

Ed. 1, Rev. 0

12.5 ABNORMAL PROCEDURES

This table is a quick access table that provide additional information regarding residual A/P capabilities in case loss of autopilot servos and/or pitch trim servo.

With A/P engaged, in case of loss of both A/P servos and pitch trim servo, the disconnect tone will play continuously, until acknowledged through A/P button on MFD or trim switch on control wheel.

	LOSS OF				ESP STATUS	ATUS	USP STATUS	SI
SERVO	PITCH TRIM SERVO	A/P STATUS	NOTES	A/P FUNCTIONALITY	NO	OFF	NO	OFF
			MEPT Unavailable	A/P can be engaged, but			>	
	х		PTRM red on PFD NO VERT MODES on PFD	only lateral modes will be correctly flown (lack of pitch trim).	Х		(can't hold 65 kts without pitch trim	
			PTRM C&M red cross on MFD SYS page	FD is operative in all modes			available)	
			<u>A/P disconnect</u>					
x		DISENCE A CED	PTCH red annunciation on PFD NO VERT MODES on PFD	A/P can't be engaged		х		X (only MINISPIN
		DISENTAGED	ESP Fail on alert window PTCH C&M red cross on MFD SYS page ROLL C&M red cross on MFD SYS page	FD is operative in all mores				warning)
			A/P disconnect & MEPT Unavailable					
			AFCS red annunciation on PFD (1")	A/D ran't he encared				X (only
Х	Х		ESP Fail on alert window PTCH C&M red cross on MFD SYS page	FD is operative in all modes		х		MINSPD warning)
			ROLL C&M red cross on MFD SYS page PTRM C&M red cross on MFD SYS page					ó
			<u>MEPT Unavailable</u>				A	
	х		PTRM red annunciation on PFD NO VERT MODES on PFD	A/P fully operative FD is operative in all modes	х		(can't hold 65 kts without pitch trim	
			PTRM C&M red cross on MFD SYS page				avaılab le)	
			<u>A/P disconnect</u>					
х			PTCH red annunciation on PFD NO VERT MODES on PFD	A/P disconnects and can't be engaged		х		X (only Miximum
			ESP Fail on window alert	FD is operative in all modes				warning)
		ENGAGED	PTCH C&M red cross on MFD SYS page ROLL C&M red cross on MFD SYS page					
			AP continuous disconnect tone can be silenced through the AP button on MFD and by the trim switch on control wheel.					
>	\$		<u>A/P disconnect & MEPT Unavailable</u> AFCS red annunciation on PFD (1")	A/P disconnects and can't		>		X (only
<	×		NO VERT MODES on PFD	be engaged FD is operative in all modes		<		MINSPD warning)
			ESP Fail on alert window PTCH C&M red cross on MFD SYS page ROLL C&M red cross on MFD SYS page PTRM C&M red cross on MFD SYS page					

Ed. 1, Rev. 0

Section 3 – Emergency procedures AUTOPILOT EMERGENCY PROCEDURES

This table is a quick access table that provide additional information regarding residual A/P capabilities in case of loss of PFD or MFD.

PFD	MFD	NOTES
$ON \rightarrow OFF$	ON	A/P reverts to PIT & ROLL (from any mode selected)
		No aurals from A/P (both A/P DISC & USP)
ON ON → OFF		A/P stays in the selected mode
		A/P control keyboard unavailable
		A/P can be disconnected with A/P DISC button on control
		wheel
		FD command bars cannot be eliminated
		ESP Off on alert window on PFD
		A/P automatically disconnects after ~ 4 to 5 seconds
$ON \rightarrow OFF$	$\text{ON} \rightarrow \text{OFF}$	A/P disconnection tone plays endlessly until A/P DISC button
		is pressed

INTENTIONALLY LEFT BLANK

Ed. 1, Rev. 0

Supplement D01: pages replacement instructions

SECTION 4 – NORMAL PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 4 Normal Procedures

According to A/C configuration apply following pages replacement:

Supplement D01 NORMAL PROCEDURES		AFM Section 4
page		page
4A-27 thru 38	REPLACES	*Added at the end of Section 4 of basic AFM

INTENTIONALLY LEFT BLANK

Ed. 1, Rev.0

6 AUTOPILOT NORMAL PROCEDURES

For detailed description of A/P selections, behaviour and display outlook, refer to the "Garmin G1000 Pilot's Guide for the Tecnam P2010" (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version); it must be always carried in the aircraft and made available to the pilot at all time.

If A/P Master switch and /or Trim disconnect switch are inadvertently switched OFF, it will be necessary to reset both switches to allow A/P and pitch trim functionality. In this case pilot will make sure A/P is disengaged before reset. The single reset of only one of the switches will not permit to reset the single functionality.

PREFLIGHT:

AIRCRAFT PRE-FLIGHT CHECKS:

- 1) MASTER SWITCH (BAT): ON.
- 2) AVIONICS MASTER SWITCH: ON.
- 3) AUTOPILOT MASTER SWITCH: ON.

4) POWER APPLICATION and SELFCTEST - The autopilot tests itself when power is first made available. The test is a sequence of internal checks before starting normal system operation. The test sequence is shown on PFD left upper corner by the red AFCS label followed by the white PFT label, ending with double AP disengagement tone (which indicates a successful completion).

Autopilot system availability is shown under system page on MFD.

If the red AFCS stays ON, the A/P has failed the preflight test. Put the A/P MASTER SWITCH OFF to make sure that the A/P will not operate.

5) MANUAL ELECTRIC TRIM (MET) SYSTEM - TEST.

Pitch Trim: cycle fully up and down, then set to NEUTRAL.

NOTE

Both pitch trim halves must be actuated to move pitch trim. Any movement of the elevator trim wheel during the check of either the LH or RH Switch only means that the Manual Electric Trim System has failed.

- 6) ELEVATOR TRIM WHEEL SET pointer to takeoff position.
- 7) AVIONICS MASTER SWITCH: OFF
- 8) MASTER SWITCH (BAT): OFF

7 AUTOPILOT MODES

When the A/P is engaged, the pilot must continuously monitor and be ready to disengage the A/P. Do the Emergency Recovery procedure if A/P operation is erratic or does not correctly control the airplane.

The "Garmin G1000 Pilot's Guide for the Tecnam P2010" (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version) must be carried in the aircraft and made available to the pilot at all time.

Autopilot tracking performance will not be as good as usual in turbulence.

Autopilot engagement / disengagement is not equivalent to servo engagement/disengagement. Use the CWS Button to disengage the pitch and roll while the autopilot remains active.

HDG

Pressing the HDG knob synchronizes the Selected Heading to the current heading.

In this case expect a small heading overshoot that will be subsequently corrected.

VS MODE

Selection of a vertical speed beyond the capability of the aircraft can create a condition of reduced airspeed, and possibly lead to USP activation.

During A/P operation, pilot must set the A/P Vs rate and engine power to make sure that airspeed remains within autopilot envelope and does not exceed any other airplane operating limitation.

VS is an open mode, which will engage irrespective of Selected Altitude. Pilot monitoring is always required to make sure that a correct Selected Altitude is shown on PFD.

SELECTED ALTITUDE CAPTURE MODE (ALTS)

Pressing the CWS Button while in Selected Altitude Capture Mode does not cancel the mode.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual

ALTITUDE HOLD MODE (ALT)

Turning the ALT knob while in Altitude Hold Mode changes the Selected Altitude, but not the FD Altitude Refrence, and does not cancel the mode.

FLC MODE

The Selected Altitude <u>MUST</u> be set before selecting Flight Level Change Mode.FLC IAS selection is directly linked to actual IAS, pilot will need to monitor airspeed after selection of FLC mode.

VERTICAL NAVIGATION MODES (VPTH, ALTV)

VNV is disabled when parallel or dead reckoning mode is active.

The selected altitude takes precedence over any other vertical constraints.

NOTE

If another pitch mode key is pressed while Vertical Path Tracking Mode is selected, VPTH mode reverts to armed.

If the selected altitude is not at least 75 ft below the VNV Target Altitude, the FD captures the Selected Altitude once Vertical Path Tracking Mode become active (ALTS is armed rather than ALTV).

Altitude preselect must show an altitude **below** the flight plan's Target Altitude.

If the selected altitude is not at least 75 ft below the VNV Target Altitude, the FD captures the Selected Altitude once Vertical Path Tracking Mode become active (ALTS is armed rather than ALTV).

If VPTH is armed more than 5 minutes prior to descent path capture, acknowledgement is required for the FD to transition from Altitude Hold to VPTH.

To proceed with descent path capture if the white "VPTH" flashes, do the following:

- Press VNV Kay
- Turn ALT knob to adjust the Selected Altitude.

If the selected altitude is not at least 75 ft below the VNV Target Altitude, the FD captures the Selected Altitude once Vertical Path Tracking Mode become active (ALTS is armed rather than ALTV).

Armed VNV Target Altitude and Selected Altitude capture modes are mutually exclusive. Selected Altitude Capture Mode is armed also (not annunciated) whenever VNV Target Altitude Capture Mode is armed.

APPROACH MODES

The selected navigation receiver must have a valid VOR or LOC signal or active GPS course for the flight director to enter Approach Mode.

Ed. 1, Rev.0

Page 4A-29

8 AUTOPILOT ABNORMAL PROCEDURES

Loss of a single GPS:

In case of loss of a single GPS, RNAV guidance will still be available as the system will automatically revert to the other available GPS without losing any autopilot / FD guidance.

The ALERT window will switch to ADVSY and start to flash; when selected a "AHRS1 GPS – AHRS1 using backup GPS source" CAS message will appear inside the alert window.

Loss of both GPS:

In case of loss of both GPS, RNAV guidance will not be available anymore.

The ALERT window will switch to ADVSY and start to flash; when selected a "GPS NAV LOST – Loss of GPS navigation. Insufficient satellites" CAS message will appear inside the alert window. In this case also ESP will be lost and the "ESP OFF" CAS message will also appear inside the alert window.

Further to that, a yellow "LOI" (loss of integrity) CAS message will be displayed on the HIS and all other GPS related information (e.g. wind) will turn to yellow.

If GPS nave mode is being selected, the HSI on the PFD will not display the deviation bar. If GPS is selected as navigation source a "AHRS1 GPS – AHRS1 operating exclusively in no-GPS mode" CAS message will appear inside the alert window.

NOTE

Dead Reckoning Mode only functions in Enroute (ENR) or Oceanic (OCN) phase of flight. In all other phases, an invalid GPS solution produces a "NO GPS POSITION" annunciation on the map and the G1000 stops using GPS.

It is important to note that estimated navigation data supplied by the G1000 in DR Mode may become increasingly unreliable and must not be used as a sole means of navigation. If while in DR Mode airspeed and/or heading data is also lost or not available, the DR function may not be capable of accurately tracking estimated position and, consequently, the system may display a path that is different than the actual movement of the aircraft. Estimated position information displayed by the G1000 through DR while there is no heading and/or airspeed data available shall not be used for navigation.

DR Mode is inherently less accurate than the standard GPS/SBAS Mode due to the lack of satellite measurements needed to determine a position.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND RNAV/RNP NAVIGATION ELIGIBILITY Page 4A-31 P2010 - Aircraft Flight Manual

NOTE

Changes in wind speed and/or wind direction compound the relative inaccuracy of DR Mode. Because of this degraded accuracy, other navigation equipment must be relied upon for position awareness until GPSderived position data is restored.

DR Mode is indicated on the G1000 by the appearance of the letters 'DR' superimposed in yellow over the 'own aircraft' symbol.

In addition, 'DR' is prominently displayed in yellow on the HSI slightly above and to the right of the aircraft symbol on the CDI. Also, the CDI deviation bar is removed from the display. Lastly, but at the same time, a 'GPS NAV LOST' alert message appears on the PFD.

Normal navigation using GPS/SBAS source data resumes automatically once a valid GPS solution is restored. As a result of operating in DR Mode, all GPS-derived data is computed based upon an estimated position and is displayed as yellow text on the display to denote degraded navigation source information.

Also, while the G1000 is in DR Mode, some terrain functions are not available. Additionally, the accuracy of all nearest information (airports, airspaces, and waypoints) is questionable. Finally, airspace alerts continue to function, but with degraded accuracy.

RAIM AVAILABILITY:

Because of tighter protection limit on approaches, there may be times when RAIM is not available. The G1000 automatically monitors RAIM and warns with an alert message when it is not available. If RAIM is not predicted to be available for the final approach course, the approach does not become active, as indicated by the message "Approach is not active".

If RAIM is not available when crossing the FAF, the missed approach procedure must be flown.

9 ADDITIONAL GUIDANCE FOR RNAV GPS

Experience of RNAV systems, and Flight FMS in general, has identified the pitfalls of waypoint entry error at the receiver as well as inaccuracies and errors in the database itself.

Research and experience have both shown that human error, often the result of a lack of familiarity with the airborne equipment, represents the major hazard in operations using RNAV systems. Therefore, it is imperative that pilots understand their system thoroughly and are able to determine whether it is safe to proceed.

This requires robust procedures, which check for possible errors in the computer database, monitor continued performance of the RNAV systems and enable pilots to identify and avoid not only their own mistakes but also errors in the information presented to them.

Flight planning on RNAV routes should include the following recommendation.

- During the pre-flight planning phase, given a GPS constellation of 23 satellites or less (22 or less for GPS stand-alone equipment that incorporate pressure altitude aiding), the availability of GPS integrity (RAIM) should be confirmed for the intended flight (route and time). This should be obtained from a prediction program either ground-based, or provided as an equipment function, or from an alternative method acceptable to the Authority;

- Where a navigation data base is installed, the data base validity (current AIRAC cycle) should be checked before flight;

- Traditional navigation equipment (e.g. VOR, DME and ADF) should be selected to available aids so as to allow immediate cross-checking or reversion in the event of loss of GPS navigation capability.

(a) Pre-flight Planning

During the pre-flight planning phase, the availability of the navigation infrastructure, required for the intended operation, including any non-RNAV contingencies, must be confirmed for the period of intended operation. Availability of the onboard navigation equipment necessary for the route to be flown must be confirmed. The onboard navigation database must be appropriate for the region of intended operation and must include the navigation aids, waypoints, and coded terminal airspace procedures for the departure, arrival and alternate airfields.

Where the responsible airspace authority has specified in the AIP that dual PRNAV systems are required for specific terminal P-RNAV procedure, the availability of dual P-RNAV systems must be confirmed. This typically will apply where procedures are effective below the applicable minimum obstacle clearance altitude or where radar coverage is inadequate for the purposes of supporting P-RNAV. This will also take into account the particular hazards of a terminal area and the feasibility of contingency procedures following loss of P-RNAV capability.

RAIM availability must be confirmed with account taken of the latest information.

(b) Departure

At system initialisation, the flight crew must confirm that the navigation database is current and verify that the aircraft position has been entered correctly. The active flight plan should be checked by comparing the charts, SID or other applicable documents, with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will use a specific navigation aid(s), or to confirm exclusion of a specific navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database.

The creation of new waypoints by manual entry into the RNAV system by the flight crew is not permitted as it would invalidate the affected P-RNAV procedure.

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion. This may include the insertion in the flight plan of waypoints loaded from the database.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness, by cross-checks, with conventional navigation aids using the primary display.

(c) Arrival

Prior to the arrival phase, the flight crew should verify that the correct terminal procedure has been loaded. The active flight plan should be checked by comparing the charts with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will exclude a particular navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database.

Note: as a minimum, the arrival checks could be a simple inspection of a suitable map display that achieves the objectives of this paragraph.

The creation of new waypoints by manual entry into the RNAV system by the flight crew would invalidate the P-RNAV procedure and is not permitted.

Where the contingency to revert to a conventional arrival procedure is required, the flight crew must make the necessary preparation.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness by cross-checks with conventional navigation aids using the primary display. Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion.

Although a particular method is not mandated, any published altitude and speed constraints must be observed.

In the event that either the GPS or the EGNOS signal is not available at the destination, by the nature of the system, and its susceptibility to interference, there exists the possibility that it will also be unavailable over a wide area. Therefore it is probable that the signal will also be unavailable at a nearby diversion aerodrome.

Notwithstanding any normal operational requirements for the identification of an alternate aerodrome, where a RNAV approach is to be flown in conditions where a visual approach will not be possible; pilots should always ensure that either:

- 1) A different type of approach system is available at the destination, not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach, or;
- 2) There is at least one alternate destination within range, where a different type of approach system is available, which is not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach.

9.1 APPROACH APPLICATIONS

NOTE

When GPS is not approved for the selected final approach course, the message "NOT APPROVED FOR GPS" is displayed. GPS provides guidance for the approach, but the HIS must be switched to a NAV receiver to fly the final course of the approach.

NOTE

If certain GPS parameters (SBAS, RAIM, etc.) are not available, some published approach procedures for the desired airport may not be displayed in the list of available approaches.

An Approach Procedure (APPR) can be loaded at any airport that has one available, and provides guidance for non-precision and precision approaches to airports with published instrument approach procedures.

NOTE

Only one approach can be loaded at a time in a flight plan. If an approach is loaded when another approach is already in the active flight plan, the new approach replaces the previous approach. The route is defined by selection of an approach and the transition waypoints.

Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

When selecting an approach, a "GPS" designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver can be used for supplemental navigation guidance only.

NOTE

If the GPS receiver cannot be used for primary guidance, the appropriate navigation receiver must be used for the selected approach (e.g., VOR or ILS). The final course segment of ILS approaches, for example, must be flown by tuning the NAV receiver to the proper frequency and selecting that NAV receiver on the CDI.

The G1000 SBAS GPS allows for flying LNAV, LP, LP+V and LPV approach service levels according to the published chart. The '+V' designation adds advisory vertical guidance for assistance in maintaining a constant vertical glidepath similar to an ILS glideslope on approach. This guidance is displayed on the system PFD in the same location as the ILS glideslope using a magenta diamond. A sample of how the active approach service level is annunciated on the HSI is shown in the following table:

HSI Annunciation	Description	Example on HSI
LNAV	RNAV GPS approach using published LNAV minima	351°
LP (available only if SBAS available)	RNAV GPS approach using published LP minima (downgrades to LNAV if SBAS unavailable)	111133 N
LP+V (available only if SBAS available)	RNAV GPS approach using published LP minima Advisory vertical guid- ance is provided (down- grades to LNAV if SBAS unavailable)	Approach Service Level - LNAV, LP, LP+V, LPV
LPV (available only if SBAS available)	RNAV GPS approach using published LPV minima	

Before reaching the IAF, the flight crew should verify that the correct procedure has been loaded into the receiver's route or flight plan. A comparison with the approach chart should be made including the following:

- a) The waypoint sequence.
- b) Reasonableness of the tracks and distances of the approach legs, accura cy of the inbound course and mileage of the FAS.
- c) Verify from the charts, map display or CDU, which waypoints are flyby and which are fly-over.
- d) Check any map display to ensure the track lines actually 'fly-over' or 'fly-by' the respective waypoints in the procedure.

By the time the aircraft reaches the IAF the pilot should have completed the above and been cleared for the approach. Also, the approach must have been activated in the receiver at least by this time.

Approach Applications which are classified as RNP Approach (APCH) in accordance with ICAO Doc 9613 Performance Based Navigation (PBN) Manual (and ICAO state Letter SP65/4-10/53) give access to minima (on an instrument approach procedure) designated as:

LNAV (Lateral Navigation)

This is a Non-Precision or 2D Approach with Lateral only navigation guidance provided by GNSS and an Aircraft Based Augmentation System (ABAS). Receiver Autonomous Integrity Monitoring (RAIM) is a form of ABAS. Lateral guidance is linear with accuracy to within +/- 0.3 NM parallel to either side of the final approach track.

LP (Localiser Performance)

This is a Non-Precision or 2D Approach with Lateral only navigation guidance provided by GNSS and SBAS. The EGNOS is a form of SBAS in Europe. The lateral guidance is angular with increasing sensitivity as the aircraft continues along the final approach track; much like a localiser indication.

LPV (Localiser Performance with Vertical Guidance)

This is an Approach Procedure with Vertical Guidance. The Lateral and Vertical guidance is provided by GPS and SBAS. Lateral and vertical guidance are angular with increasing sensitivity as the aircraft progresses down the final approach track; much like an ILS indication. LPV approach and annunciation on HSI is available only is SBAS available.

Before selecting a LPV approach, make sure SBAS is indicated AC-TIVE in the GPS status box on AUX-GPS STATUS page on MFD. If DISABLED highlight the appropriate SBAS SELECTION Box under SBAS softkey under AUX-GPS Status Page on MFD.

Should SBAS signal be lost, augmentation is lost. It may be possible to continue with LNAV only but this is reliant on the availability of RAIM.

NOTE: The instrument approach procedures associated with RNP APCH are entitled RNAV (GNSS) to reflect that GNSS is the primary navigation system. With the inherent onboard performance monitoring and alerting provided by GNSS, the navigation specification qualifies as RNP, however these procedures pre-date PBN, so the chart name has remained as RNAV.

Missed approach procedures

Before commencing an RNAV (GNSS) missed approach, a MAP should be possible without reference to GPS derived navigation so that, in the event of a loss of GPS accuracy or loss of integrity during the approach, a safe return to above Minimum Sector Altitude can be made.

This may be possible by dead reckoning (DR) navigation but where this is not possible and the MAP requires reference to terrestrial navigation aids, these must be available, tuned and correctly identified before passing the IAF and remain available throughout the approach.

Reasons for a missed approach are many and if GPS information remains available for the MAP, the pilot must be able to sequence the system correctly past the MAP, in order to follow the published MAP correctly.

Pilots should be fully competent in the necessary selection routines required by their own equipment, in order to transition to the MAP and preserve accurate navigation throughout.

When GPS navigation is NOT available for the MAP, it may be necessary to reset the display function of the HSI/CDI to disengage GPS information and regain VOR/LOC display. Pilots must be fully conversant with navigation display selections in order safely to follow the MAP.

Abnormal procedures for approaches

As the aircraft approaches the FAF (LNAV Only, without SBAS), the receiver automatically perform a final RAIM prediction for the approach. The receiver will not enter the approach mode if this RAIM prediction is negative. In this case, the approach should be discontinued.

However, this RAIM check assumes availability of the full constellation and will not take account of scheduled interruptions or failures. This can lead to a successful RAIM prediction at this point when the RAIM function itself is not available.

If RAIM is lost after passing the FAF the equipment should continue to provide navigation, where possible for five minutes, before giving a RAIM loss indication and this should be enough to complete the approach.

Should RAIM detect an out of tolerance situation, a warning will be given and a missed approach should be initiated immediately.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND COSTRUZION ARTONAUTICHE RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual

The approach should always be discontinued:

- If the receiver fails to engage the correct approach mode or;
- In case of Loss Of Integrity (LOI) monitoring or;
- Whenever the HSI/CDI indication (or GP indication where applicable) exceeds half scale displacement or;
- If a RAIM (or equivalent) warning is activated or;
- If RAIM (or equivalent) function is not available and annunciated before passing the FAF.

Supplement D01: pages replacement instructions

SECTION 5 - PERFORMANCE

Make sure you first applied instructions reported on the basic AFM, Section 5 Performance

According to A/C configuration refer to the basic AFM, Section 5 – Performance

INTENTIONALLY LEFT BLANK

Ed. 1, Rev.0

Supplement D01: pages replacement instructions

SECTION 6 - WEIGHT AND BALANCE

Make sure you first applied instructions reported on the basic AFM, Section 6 Weight and Balance

According to A/C configuration apply following pages replacement:

Supplement D01 WEIGHT AND BALANCE		AFM Section 6
page		page
6A-11 thru 12	REPLACES	6-11 thru 12 of basic AFM, Section 6

INTENTIONALLY LEFT BLANK

5 EQUIPMENT LIST

The following is a list of equipment which may be installed in the **P2010**. The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual

Page 6A-12

		AIRCRAFT S/N	DATE	DATE:		
Ref.	DESCRIPTION	P/N	Inst	Weigнт [kg]	Акм [м]	
INSTRUME	NTATION					
A1	GARMIN G1000 IFDS					
A2	MD 302 MID Continent	6420302-1		0.73	-0.69	
A3	Compass	C2400L4P		0.4	-0.69	
A4	Pitch trim indicator – UMA instruments	N0911S0U2DR00W		0.1	-0.69	
A5	Digital Clock - Davtron	M800-28V-BAT		0.1	-0.69	
AVIONIC	S & MISCELLANEOUS					
B1	ELT-ACK	E-04		0.73	1.61	
B2	Front seats GEVEN	E5-01-007-T01 (LH) E5-01-008-T01 (RH)		20 (10x2)	0.50	
В3	Rear seats GEVEN	E5-01-007-T01 (LH) E5-01-008-T01 (RH)		20 (10x2)	1.26	
B4	Fire extinguisher	13-07655		0.8	-0.18	
В5	First aid kit	FIA270160		0.2	0.5	
B6	Torch			1	-0.18	
B7	Battery GILL247- 24V -19Ah	G247		19.3	3.05	
B8	Fuel qty sender – Electronics international	P-300C		0.15	0.5	
В9	ADF Receiver – RA 3502	0505.757-912		1.5	3.05	
B10	DME Transceiver - King KN 63	066-01070-0001		2	3.05	
GARMIN	GFC700 Autopilot:					
B11	Servo pitch GSA 80	011-00877-20		1.44	5.3	
B12	Servo roll GSA 80	011-00877-20		1.44	2.05	
B13	Servo pitch trim GSA 81	011-00878-20		1.03	5.3	
LIGHTS:						
B14	Nav/POS/Strobe Light SH wing - Ultragalactica Aveo	AVE-WPST R/G-54G		1	0.23	
B15	Rudder Nav Light – PosiStrobe CT	AVE-POSW-62G		1	5.5	
B16	Landing/Taxy Light - WHELEN Mod 7167400	01-0771674-00		2	-1.52	
PITOT S	FATIC:					
B17	Pitot (Heated) - Falcon Gauge	24-AN5812-1		3	0.5	
LANDING	Gear Accessories					
C1	Nose Landing Gear Wheel Fairing	210-4-3001-401		1.2	-1.48	
C2	Main Landing Gear Wheel Fairings	210-4-1020-001-L/R		3 (1.5x2)	0.66	

Supplement D01: pages replacement instructions

SECTION 7 - AIRFRAME AND SYSTEMS DESCRIPTION

Make sure you first applied instructions reported on the basic AFM, Section 7 Airframe and Systems Description

According to A/C configuration apply following pages replacement:

Supplement D01 AIRFRAME AND SYSTEMS DESCRIPTION page		AFM Section 7 page
7A-8 thru 9	REPLACES	7-8 thru 9 of basic AFM, Section 7
7A-20 thru 21	7A-20 thru 21 REPLACES 7-20 t	
7A-27	REPLACES	7-27 of basic AFM, Section 7
7A-33	REPLACES	7-33 of basic AFM, Section 7

Ed 1, Rev. 0

INTENTIONALLY LEFT BLANK

Ed 1, Rev. 0

3 FLIGHT CONTROLS

Aircraft flight controls are operated through conventional stick and rudder pedals. Longitudinal control acts through a system of push-rods and is equipped with a trim tab. a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially. Aileron trimming is carried out on ground through a small tab positioned on left aileron.

Flaps are extended via an electric servo actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the indicator displays three markings relat-ed to 0°, takeoff (T/O) and landing (FULL) positions. A breaker positioned on the right side of the instrument panel protects the electric circuit.

The control of the stabilator trim is operated by means of both a control wheel, located between the two front seats that acts directly on the control cables, and an electrical actuator controlled by a switch located on the control wheel; stabilator trim position is displayed on a dedicated analogue indicator located on the LH area of the instrument panel.

Rudder Trimming device for lateral control is provided by means of an electrical actuator controlled by a rocker switch located near the pitch trim wheel; the surface is con-nected to a potentiometer linked to a rudder trim indicator included in the Garmin G1000 EIS (Engine Indication System).

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual

4 INSTRUMENT PANEL

The instrument panel is divided in three areas:

- The left area holds Garmin G1000 PFD, a chronometer and the pitch trim indicator; •
- The Central area holds the standby unit for PFI parameters, MD 302 suite, and the . ELT button.
- The right area holds Garmin G1000 MFD with dedicated AP control buttons and breaker panel;
- The lower-LH portion of the instrument panel holds:
 - \succ Ignition key;
 - Master and Generator switches;
 - Emergency fuel pump;
 - > Avionic Master switch;
 - > AP Master switch
 - Trim Disconnect switch
- The lower-Central portion of the instrument panel holds:
 - Fuel selector valve.
 - ➢ Flap Control
- The lower-RH portion of the instrument panel holds:
 - > Pocket

Fig. 7-8. INSTRUMENT PANEL

Section 7 - Airframe and Systems description **INSTRUMENTAL PANEL**

Ed. 1, Rev. 0

9 ELECTRICAL SYSTEM

Primary DC power is provided by an external alternator with a 28 VDC output, rated of 70 Amps @ 2700 rpm. During normal operations, it recharges the battery.

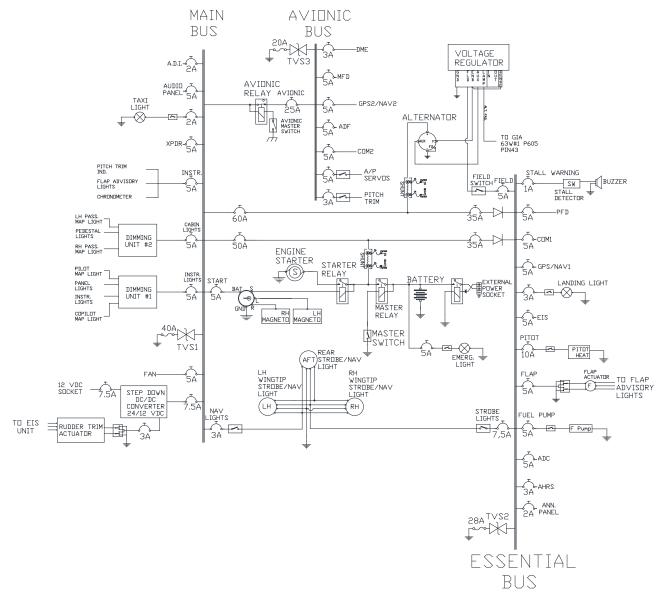
Secondary DC power is provided by a lead type battery (GILL G-247) which provides the energy necessary for feeding the essential electrical loads in the event of an alternator failure.

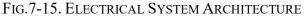
The switch between the energy sources is automatic and no action is required in order to activate the alternate energy source.

For ground maintenance and/or starting, an external power socket is provided.

The alternator and battery are connected to the battery bus in order to provide energy for the electric equipment.

Each electrically fed instrument is connected to a dedicated circuit breaker which protects the cable from the battery bus to the associated electric equipment.




If the Ignition is in the position L, R, or BOTH, an accidental movement of the propeller may start the engine with possible danger for bystanders.

In the following figure is presented the electrical system architecture.

P2010 - Aircraft Flight Manual

12.3 STALL WARNING SYSTEM

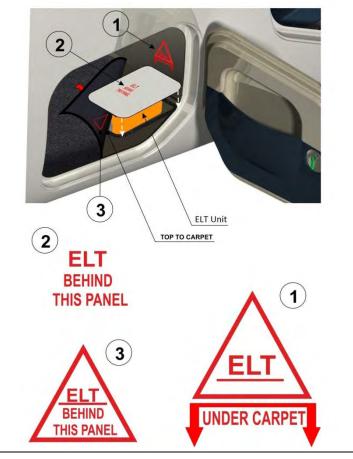
The aircraft is equipped with a stall warning system consisting of a sensor located on the right wing leading edge connected to a warning horn located near the instrument panel.

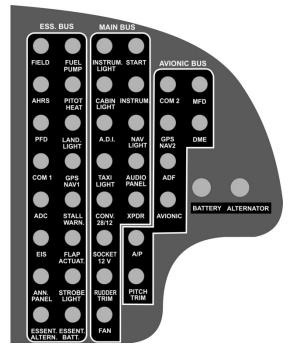
11.2 INTERNAL LIGHTS

On the cabin ceiling are located four map lights, two in the front area (pilot) and two in the rear area (passengers).

In the central area of the cabin ceiling is located a spot light used to illuminate the pedestal during night flight operations. All ceiling lights are dimmable by a dedicated dimmer.

FIG.7-18. CABIN CEILING LIGHTS LAYOUT


The instrument panel can be illuminated by 8 incandescence light strips, all dimmable.


FIG.7-19. INSTRUMENT PANEL LIGHTS LAYOUT

Section 7 – Airframe and Systems description

ELT unit position placard:

Breaker Panel placards:

Section 7 – Airframe and Systems description PLACARDS

Ed. 1Rev 0

AFMS N°D01 FOR GARMIN GFC700 AUTOPILOT INSTALLATION AND

RNAV/RNP NAVIGATION ELIGIBILITY P2010 - Aircraft Flight Manual

Page 7A-33

Supplement D01: pages replacement instructions

SECTION 8 – GROUND HANDLING & SERVICE

Make sure you first applied instructions reported on the basic AFM, Section 8 Ground Handling & Service

According to A/C configuration refer to the basic AFM, Section 8 – Ground Handling & Service

Ed. 1Rev 0

SUPPLEMENT NO. D02

AFMS FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

Record of Revisions

Rev	Revised pageDescription of Revision	Description of	Tecnam Approval			EASA Approval or Under DOA
		Revision	DO	OoA	HDO	Privileges
0	_	First Issue	D.Ronca	M.Oliva	M. Oliva	

List of Effective Pages

Page	Page	Revision
Cover Pages	D02-1 thru 17	Rev 0
Section 1	V1-6	Rev 0
Section 2	V2-7	Rev 0
Section 2	V2-9, 10	Rev 0
Section 3	V3-14	Rev 0
Section 3	V3-18 thru 19	Rev 0
Section 4	V4-7	Rev 0
Section 4	V4-15	Rev 0
Section 4	V4-19 thru 26	Rev 0
Section 5	5-1 thru 16	Rev 0
Section 7	V7-10 thru 11	Rev 0
Section 7	V7-16	Rev 0
Section 7	V7-27	Rev 0
Section 7	V7-36	Rev 0

INTRODUCTION

The information contained herein supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per MT variable pitch propeller in subject.

It is the owner's responsibility to replace the mentioned pages in accordance with the instructions herein addressed section by section.

Supplement D02: pages replacement instructions

SECTION 1 – GENERAL

Make sure you first applied instructions reported on the basic AFM, Section 1 General

Apply following pages replacement:

Supplement D02 – GENERAL page		AFM Section 1 page
1-6	REPLACES	Page 1-6 of AFM, Section 1

5. ENGINE

Manufacturer	Lycoming Engines
Model	IO-360-M1A
Type Certificate	EASA TCDS no. IM.E.032
Engine type	Fuel injected (IO), direct drive, four cylinder horizontally opposed, air cooled with down exhaust outlets.
Maximum power	134.0 kW (180hp) @ 2700 rpm
Maximum continuous power	129.2 kW (173.3hp) @ 2600 rpm

6. PROPELLER

Manufacturer	MT Propeller
Model	MTV-15-B/193-52
Type Certificate	EASA TCDS no. P.098
Blades/hub	wood/composite 2-blades – aluminum hub
Diameter	1930 mm (76 in) (no reduction is permitted)
Туре	Variable pitch

Governor

Manufacturer	MT Propeller
Model	P-860-23:
Туре	Hydraulic

Supplement D02: pages replacement instructions

SECTION 2 – LIMITATIONS

Make sure you first applied instructions reported on the basic AFM, Section 2 Limitations

Supplement D02 – LIMITATIONS page		AFM Section 2 page
V2-7	REPLACES	Page 2-7 of AFM, Section 2
V2-9	REPLACES	Page 2-9 of AFM, Section 2
V2-10	REPLACES	Page 2-10 of AFM, Section 2

Apply following pages replacement:

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page V2-7

4. POWERPLANT LIMITATIONS

Following table reports the operating limitations the installed engine:

ENGINE MANUFACTURER: Lycoming Engines **ENGINE MODEL:** IO-360-M1A

MAXIMUM POWER:

	Max Power <i>(hp)</i>	Max rpm. Prop. rpm
Max. T.O.	180	2700
Max. Cont.	173.3	2600

Temperatures:

Max CHT	500° F (260° C)
Max Oil	245° F (118° C)

Oil Pressure:

Minimum Idling	25 psi (1.7 Bar)
Minimum Normal	55 psi (3.8 Bar)
Maximum Normal	95 psi (6.5 Bar)
Starting, Warm-up, taxi and take-off (Max)	115 psi (7.9 Bar)

Fuel pressure:

- At Inlet to fuel injector:	
Minimum	14 psi (0.96 Bar)
Maximum	35 psi (2.41 Bar)

2nd Edition, Rev. 0

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page V2-9

5. PAINT

To ensure that the temperature of the composite structure does not exceed limits, the outer surface of the aeroplane must be painted with white paint, except for areas of registration marks, placards, and ornament.

Refer to Aircraft Maintenance Manual (AMM), ATA Chapter 4 and 51, for specific paint requirements.

6. PROPELLER

MANUFACTURER:	MT Propeller
MODEL :	MTV 15B/193-52
ТҮРЕ:	wood/composite 2-blade, variable pitch
DIAMETER:	1930 mm (76 in) (no reduction is permitted)

7. MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 12000 ft (3658 m) MSL.

At altitudes above 10000 ft (3048 m) up to and including 12000 ft (3658 m), flight crew is recommended to use supplemental oxygen.

8. AMBIENT TEMPERATURE

Ambient temperature: from -25°C to +50°C.

Flight in expected and/or known icing conditions is forbidden.

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

P2010 - Aircraft Flight Manual

Page V2-10

4. POWERPLANT INSTRUMENT MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

INSTRUMENT		RED ARC Minimum limit	WHITE ARC Advisory	GREEN ARC Safe operation	YELLOW ARC Caution	RED ARC Maximum limit
PROPELLER	RPM	/	/	950-2600	0-950 2600-2700	2700 (line)
OIL TEMP.	°F	/	/	140-245	0 - 140	245 - 255
СНТ	°F	/	435 (line)	150-475	0 – 150 475-500	500-510
EGT	°F	/	1000-1500	/	1375 (line)	1500-1550
OIL PRESS	psi	0-25	/	55-95	25 - 55 95-115	115 - 125
FUEL PRESS	psi	0-14	/	14-35	/	35 - 40
ELIEL OTV	litres	0	1	0-115	1	/
FUEL QTY	gal	0	/	0-30,4	/	
FUEL FLOW	l/hr	/	0-75	/	1	/
FUEL FLOW	gal/hr	/	0-20	/	1	

5. OTHER INSTRUMENT MARKINGS

Instrument	RED ARC	GREEN ARC	YELLOW ARC	RED ARC
	Minimum limit	Safe operation	Caution	Maximum limit
Voltmeter	20-21 Volt	24–30 Volt	21–24 Volt	30-31

2nd Edition Rev.0

Section 9 – Supplements Supplement no. D02 – Variable pitch propeller **Supplement D02: pages replacement instructions**

SECTION 3 – EMERGENCY PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 3 Emergency Procedures

Supplement D02 – Emergency Procedures page		AFM Section 3 page	
V3-14	REPLACES	Page 3-14 of AFM, Section 3	
V3-18 thru 19	REPLACES	Page 3-18 thru 19 of AFM, Section 3	

Apply following pages replacement:

Section 9 – Supplements Supplement no. D02 – Variable pitch propeller

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

COSTRUZIONALATICHE P2010 - Aircraft Flight Manual Page V3-14

6.3.PROPELLER OVERSPEED

In case of propeller overspeed in flight, apply following procedure:

- 1. Throttle Lever REDUCE power
- 2. Propeller Lever Decrease RPM
- 3. Mixture Lever As required
- 4. RPM indicator CHECK

If it is not possible to decrease propeller rpm, **land as soon as possible** applying *Forced landing* procedure. *(See Para 11)*

Maximum propeller rpm exceedance may cause engine components damage. Monitor engine RPM; overspeed shall be prevented by retarding propeller lever.

6.4.IRREGULAR RPM

- 1. Fuel pump:ON
- 2. Fuel quantity and pressure indicators:CHECK
- 3. If necessary: SWITCH TANK

If engine continues to run irregularly

> Land as soon as possible.

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page V3-18

6.10. DEFECTIVE ENGINE CONTROLS

Defective Mixture Control Cable

- 1. Maintain altitude to the nearest arfield
- During descent, check engine behaviour to a higher power setting. A lean mixture can lead to engine roughness and loss of power. Landing approach must be planned accordingly.

Go-around may then be impossible.

Defective Throttle Control Cable

If power is sufficient to continue flight:

- 1. Approach nearest airfield, control engine power with Propeller lever
- 2. Perform landing with shut-down engine applying *Forced landing procedure. (See Para 11)*

If power is not sufficient to continue flight:

1. Carry out Forced landing procedure. (See Para 11)

Defective Propeller Lever Control Cable

If power is sufficient to continue flight:

- 1. Approach nearest airfield, control engine power with throttle
- 2. Perform normal landing.

Go-around may then be impossible.

If power is not sufficient to continue flight:

1. Carry out Forced landing procedure. (See Para 11)

COSTRUZION ARRONAUTICHE P2010 - Aircraft Flight Manual Page V3-19

7. INFLIGHT ENGINE RESTART

7.1.PROPELLER WINDMILLING

In case of engine shutdown, propeller will keep windmilling and will not stop, preventing the use of ignition key. Engine inflight restart must be performed without using ignition key with propeller windmilling in order to avoid possible engine damages.

Typical indication of a potential engine shutdown, with windmilling propeller, will be RPM running sub-idle below 600-500 RPM, to be confirmed by other engine instrument (OIL Pressure, CHT, EGT running down abnormally).

Inflight engine restart may be performed during 1g flight anywhere within the normal operating envelope of the airplane.

1.	Master switch	Check ON
2.	Fuel pump	ON
3.	Fuel quantity indicator	CHECK
4.	Fuel Selector	SWITCH TANK
5.	Throttle Lever	Minimum 1cm. above IDLE
6.	Propeller Lever	Full forward
7.	Mixture	FULL rich
8.	Throttle lever	SET as required

In case of unsuccessful engine restart:

Land as soon as possible applying Forced landing procedure. (See Para 11 Errore. L'origine riferimento non è stata trovata.)

In case of successful engine restart:

Land as soon as possible

After engine restart, if practical, moderate propeller rpm to allow the temperatures for stabilizing in the green arcs.

2nd Edition, Rev.0

Section 9 – Supplements Supplement no. D02 – Variable pitch propeller Supplement D02: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 4 Normal Procedures

Supplement D02 – Normal Procedures page		AFM Section 4 page	
V4-7	REPLACES	Page 4-7 of AFM, Section 4	
V4-15	REPLACES	Page4-15 of AFM, Section 4	
V4-19 thru 26	REPLACES	Page4-19 thru 26 of AFM, Section 4	

Apply following pages replacement:

2nd Edition, Rev.0

Section 9 – Supplements Supplement no. D02 – Variable pitch propeller

3. AIRSPEEDS FOR NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations.

	FLAPS	1160kg (2557lbs)
Rotation Speed (V_R)	T/O	60 KIAS
Best Angle-of-Climb Speed (V_X)	0°	75 KIAS
Best Rate-of-Climb speed (V_Y)	0°	82 KIAS
Flaps (V _{FE})	T/O & LAND	91 KIAS
No flaps approach	0°	80 KIAS
Approach speed	T/O	75 KIAS
Final Approach Speed	FULL	70 KIAS
Manoeuvring speed (V_A)	0°	120 KIAS
Vglide	0°	84 KIAS
Never Exceed Speed (V_{NE})	0°	166 KIAS

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

EXTECNAM P2010 - Aircraft Flight Manual Page-V4-15

5. CHECKLISTS

5.1. BEFORE STARTING ENGINE (AFTER PREFLIGHT INSPECTION)

- 1. Seat position and safety belts: adjust
- 2. Flight controls: operate full stroke checking for movement smoothness, free of play and friction.
- 3. Parking brake: *engage*
- 4. Throttle friction: adjust
- 5. Throttle: *IDLE*
- 6. Propeller Lever: *HIGH RPM*
- 7. Mixture control Lever: LEAN
- 8. Circuit Breakers: check all IN
- 9. Master switch: *ON, wait PFD turn on, Check ALT OUT caution ON, Check LOW FP and LOW OP warning ON*
- 10. Only before the first flight of the day:

Standby Instrument: Check no red crosses displayed.

- a. Press and hold the control knob (approx. 2 sec)
- b. Rotate the knob selecting "INFO>" page then press it
- c. Select "BATTERY INFO" page then press the knob
- d. Check "CHARGE (%)" to be more than 80%, then exit menu
- 11. Avionic Master switch: ON, wait MFD turn on, check instruments, check Voltage on Main and Essential Buses.
- 12. Fuel quantity: compare the fuel quantity indicators information with fuel quantity visually checked into the tanks (see Pre-flight inspection External inspection), then update the Garmin fuel content in the totalizer accordingly

NOTE

The totalizer function available on Garmin Engine page allows input only up to 230lts (maximum usable fuel). Initial Fuel indication on totalizer must be corrected manually (as it does not use the aircraft fuel quantity indicators as input). Once correctly initialized, fuel consumption on totalizer is very precise as it take instantaneous fuel flow for computation.

- 13. Electric fuel pump: ON (check for audible pump noise and increase of fuel pressure)
- 14. Warning "LOW FUEL PRESSURE": extinguished
- 15. Electric fuel pump: OFF
- 16. Flap control: cycle fully extended and then set to T/O
- 17. Pitch Trim: cycle fully up and down, then set to NEUTRAL
- 18. Rudder trim: cycle full right and left, then set to NEUTRAL

Pitch trim position other than in neutral position would affect take off performance and take off rotation execution at the correct V_R .

19. Nav & Strobe lights: ON

In absence of RH seat occupant: fasten seat belts around the seat in order to prevent any interference with the aeroplane flight control operation and with rapid egress in an emergency.

20. Doors: Closed and locked

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

K TECNAM P2010 - Aircraft Flight Manual Page V4-19

5.5. **BEFORE TAKEOFF**

- 1. Parking brake: brake pedal press, ON
- 2. Engine instruments: Check within limits
- 3. ALT OUT caution: OFF (check)
- 4. Electric Fuel pump: ON
- 5. Fuel selector valve: *select the fullest tank*
- 6. Fuel pressure: check
- 7. Mixture: FULL RICH

For 5000ft density altitude and above, or high ambient temperatures, a FULL RI mixture may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

- 8. Throttle: set 1500 RPM
 - a. Alternate Air check:
 - Alternate Air: PULL (Check drop 50-100 RPM)
 - b. Mixture check:
 - Mixture: *reduce*
 - EGT: *check increase*
 - FF: check decrease
 - Mixture: FULL RICH
- 9. Throttle: 2100 RPM
- 10. Propeller Lever:
 - Pull back until a drop of max. 500 RPM is reached then high RPM
 - Cycle 3 times
- 11. Magneto Check: L BOTH R BOTH
 - Max RPM drop: 175 RPM
 - Max. difference: 50 RPM
- 12. Throttle: *Idle*
- 13. Flaps: check T/O
- 14. Pitch and Rudder trim: check neutral
- 15. Flight controls: check free
- 16. Seat belts: check fastened
- 17. Doors: check closed and locked
- 18. Parking brake: Release
- 19. Landing light: ON as required
- 20. XPDR: ON

COSTRUZIONA AERONAUTICHE P2010 - Aircraft Flight Manual Page V4-20

5.6. TAKEOFF

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixt may cause rough running of the engine or a loss of performance. The mixture may be justed to obtain smooth engine operations.

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft den altitude or higher.

During climb, a rough method of correctly leaning is to slowly reduce mixture lever until increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

- 1. Pitot HEAT: ON if required
- 2. Fuel pump: ON
- 3. Brakes: *apply*
- 4. Throttle: FULL and check approximately 2680 ± 20 RPM

NOTE

Engine proper performance at full throttle shall be checked early in the ground roll in order to abandon take-off if necessary.

A rough engine, sluggish RPM increase or failure to reach take-off RPM are reasons for abandoning the take-off. If the engine oil is cold, an oil pressure in the yellow sector is permissible.

- 5. Engine instruments: check parameters within the limits
- 6. Brakes: Release
- 7. Rotation speed V_R : 60 KIAS
- 8. Airspeed: 67 KIAS

Above a safe height:

- 9. Propeller lever: 2600 RPM
- 10. Landing lights: OFF

COSTRUZIONA AERONAUTICHE P2010 - Aircraft Flight Manual Page V4-21

5.7. CLIMB

NOTE

Due to position of fuel sensors, during climb fuel gauges in cockpit will indicate a fuel quantity slightly lower than the real amount. Regaining level flight will immediately restore correct indications.

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixture may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft density altitude or higher.

During climb, a rough method of correctly leaning is to slowly reduce mixture lever until an increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

1. Flaps: UP (minimum speed 73 KIAS)

NOTE

Expect to adjust pitch trim (pitch up) when retracting flaps after take-off

- 2. Establish climb Vy: 82 KIAS
- 3. Electrical fuel pump: OFF
- 4. Fuel pressure: check within limits
- 5. Throttle: FULL
- 6. MIXTURE: RICH, above 5000ft keep EGT constant
- 7. Engine instruments: in the GREEN

NOTE

If the fuel pressure warning light illuminates, or the fuel pressure indication is below green arc, the electrical fuel pump must be switched ON.

K TECNAM P2010 - Aircraft Flight Manual Page V4-22

5.8. CRUISE

- 1. Power: set performance as required, refer to table in section 5 of AFM
- 2. Propeller lever: 1800-2400 RPM
- 3. Fuel tank selector: as required to maintain symmetric balance
- 4. Mixture: set in accordance with following para 5.9

To optimize engine life, the cylinder head temperature (CHT) should lie between $150^{\circ}F$ and $400^{\circ}F$ in continuous operation, and not rise above $435^{\circ}F$ in fast cruise.

Monitor and manually compensate asymmetrical fuel consumption by switching fuel selector valve. Switch ON the electric fuel pump prior to swap the fuel feeding from one tank to another.

5.9. MIXTURE ADJUSTMENT RECOMMENDATION

The maximum permissible cylinder head temperature (500 $^{\circ}F$) must never be exceeded.

The mixture control lever should always be moved slowly.

Before selecting a higher power setting the mixture control lever should, on each occasion, be moved slowly to fully RICH before throttle adjustment. Care should always be taken that the cylinders do not cool down too quickly.

The cooling rate should not exceed 50 °F per minute.

For maximum service life cylinder head temperature should be kept below 475 °F (high performance cruise) and below 435 °F (for economy cruise).

Best Cruise Economy Mixture

The best economy mixture setting may only be used up to a power setting of 75 %. In order to obtain the lowest specific fuel consumption at a particular power setting, proceed as follows:

- Slowly pull the mixture control lever back towards LEAN until the engine starts to run roughly.
- Then push the mixture control lever forward just far enough to restore smooth running. At the same time the exhaust gas temperature (EGT) should reach a maximum.

Best Cruise Power Mixture

The mixture can be set for maximum performance at all power settings:

- The mixture should first be set as for best economy.
- The mixture should then be enriched until the exhaust gas temperature is approximately 100°F lower.

This mixture setting produces the maximum performance for a given manifold pressure and is mainly used for high power settings (approximately 75 %).

EXTECNAM P2010 - Aircraft Flight Manual Page V4-23

5.10. DESCENT

NOTE

Due to position of fuel sensors, during descent fuel gauges in cockpit will indicate a fuel quantity slightly higher than the real amount. Regaining level flight will immediately restore correct indications.

- 1. Mixture control: slowly full rich
- 2. Propeller lever: as required
- 3. Throttle: reduce as required

Shock cooling shortens engine life.

NOTE

When reducing power, the change in cylinder head temperature should not exceed 50°F per minute. In order to ensure best practice and avoid potential illumination of ALT FAIL (due to low propeller speed), the following best practice should be observed:

- *Reducing power to maintain a minimum descent speed of 84 KIAS (best glide) and / or a blade angle to maintain 850 RPM;*
- Opening the ALTER AIR command to full open (to avoid ice accretion).

The maximum permissible cylinder head temperature (500 °F) must never be exceeded. The mixture control lever should always be moved slowly.

.

CAUTION

Before selecting a higher power setting the mixture control lever should, on each occasion, be moved slowly to fully RICH.

Care should always be taken that the cylinders do not cool down too quickly. The cooling rate should not exceed 50 °F per minute.

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES

EXTECNAM P2010 - Aircraft Flight Manual Page V4-24

5.11. BEFORE LANDING

- 1. Electric fuel pump: ON
- 2. Fuel valve: *select the fullest tank*
- 3. Landing Light: ON

On downwind, leg abeam touch down point:

4. Flaps: set T/O (below 90KIAS)

NOTE

Expect to adjust pitch trim (pitch down) when extending flaps to T/O or LAND

5. Approach speed: set

On final leg, before landing:

- 6. Mixture control lever: *RICH*
- 7. Propeller Lever: *HIGH RPM*
- 8. Flaps: *LAND*
- 9. Final Approach Speed: set
- 10. Optimal touchdown speed: 60 KIAS

In conditions such as (e.g.) strong wind, danger of windshear or turbulence a higher approach speed shall be selected..

5.12. BALKED LANDING/MISSED APPROACH

- 1. Throttle: FULL
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*

Above a safe height:

- 4. Propeller lever: 2600 RPM
- 5. Landing lights: OFF

5.13. GO-AROUND

- 1. Throttle: FULL
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*

5.14. AFTER LANDING

- 1. Throttle: *Idle*
- 2. Brakes: *apply*
- 3. Pitot heat: OFF (if ON)
- 4. Flaps: UP
- 5. Electric Fuel Pump: OFF
- 6. XPDR: OFF
- 7. Landing light: *OFF*

EXTECNAM P2010 - Aircraft Flight Manual Page V4-25

5.15. ENGINE SHUT DOWN

- 1. Parking brake: set
- 2. Keep engine running at 1200 propeller rpm for about one minute in order to reduce latent heat.
- 3. Avionic equipment: *OFF*
- 4. Throttle: *idle*
- 5. Magnetos: Check OFF BOTH
- 6. Mixture: closed
- 7. Ignition key: OFF, key extracted
- 8. Strobe light: *OFF*
- 9. Avionic Master: *OFF*
- 10. Master & Generator switches: OFF
- 11. Fuel selector valve: *OFF*

For safety, verify propeller is fully stopped before any other action.

Instruct passenger to fully open RH door and depart, avoiding contact with wheels and sharp wing control surfaces edges.

5.16. POSTFLIGHT CHECKS

- 1. Flight controls: lock by means of seat belts
- 2. Wheel chocks and wing mooring lines: Set
- 3. Parking brake: *Release*
- 4. Doors: *Close and lock*
- 5. Protection plugs: set over pitot tube, stall warning, static ports

COSTRUZION A RONAUTICHE P2010 - Aircraft Flight Manual Page V4-26

5.17. FLIGHT IN RAIN

Performance deteriorates in rain; this applies particularly to take-off distance and maximum Horizontal speed. The effect on flight characteristics is minimal.

5.18. REFUELLING

Before refuelling, the airplane must be connected to electrical ground.

5.19. FLIGHT AT HIGH ALTITUDE

At high altitudes the provision of oxygen for the occupant is necessary. Legal requirements for the provision of oxygen should be adhered to (see para 2.9).

Supplement D02: pages replacement instructions

SECTION 5 – PERFORMANCES

Supplement D02- Performances pages replace basic AFM Section 5 as whole

INTENTIONALLY LEFT BLANK

AFMS N°D02 FOR VARIABLE PITCH PROPELLER EQUIPPED AIRPLANES **EXTECNAM** P2010 - Aircraft Flight Manual Page V5 - 1

SECTION 5 – PERFORMANCE

INDEX

1.	Introduction	2
2.	Use of Performance Charts	2
3.	Airspeed Indicator System Calibration	3
4.	ICAO Standard Atmosphere	5
5.	Stall speed	6
6.	Crosswind	7
7.	Take-Off performances	8
8.	Take-off Rate of Climb	11
9.	En-Route Rate of Climb	12
10.	Cruise Performance	13
11.	Landing performances	17
12.	Balked Landing Performance	18
13.	Noise Data	19

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page V5 - 2

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

Data reported in graphs and/or in tables were determined using:

- ✓ "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- \checkmark aircraft and engine in good condition
- ✓ average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

- ✓ Airspeed
- ✓ External temperature
- ✓ Altitude
- ✓ Weight
- \checkmark Runway type and condition

2. Use of Performance Charts

Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

 2^{nd} Edition, Rev. 0

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Normal Static Source

Graph shows calibrated airspeed V_{IAS} as a function of indicated airspeed V_{CAS} .

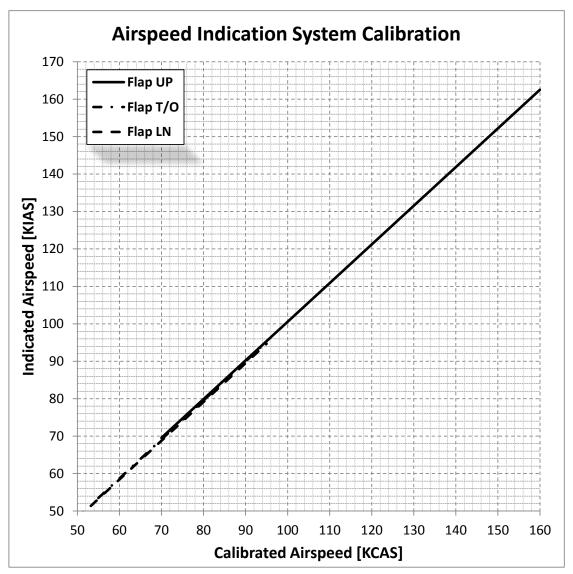
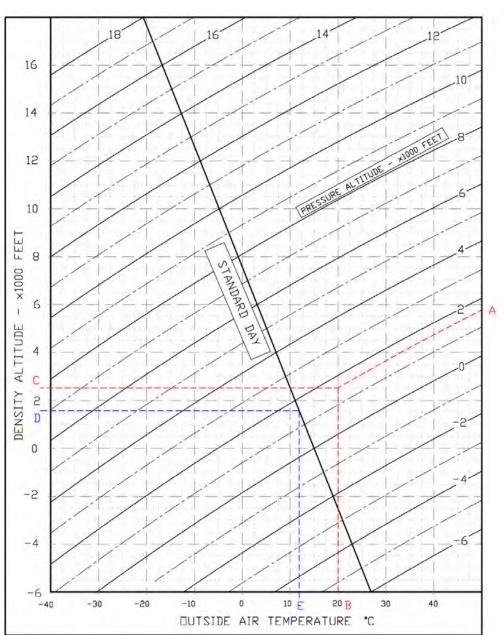


Fig. 5-1. Calibrated vs Indicated Airspeed

Example:

Given	<u>Find</u>
KIAS 75.0	KCAS 74.7
Flap: UP	KCAS /4./
NOTE	Indicated airspeed assumes 0 as a


an instrument error

 2^{nd} Edition, Rev. 0

Alternate Static Source

		Alternate Sta	atic Air Open	Vent	s Open	Vents and	Hot Air Open				
		IAS	Н _Р	IAS	Н _Р	IAS	H _P				
		[kn]	[ft]	[kn]	[ft]	[kn]	[ft]				
Pressure Altitude [ft]	IAS [kn]			FL	AP UP						
	70	75	1020	72	1010	72	1020				
	90	95	1020	92	1030	93	1020				
	110	115	1030	113	1020	112	1020				
	135	140	1040	139	1030	137	1030				
		FLAP T/O									
4000	60	63	1020	63	1020	62	1010				
1000	70	75	1020	73	1020	72	1020				
	90	94	1020	92	1020	92	1020				
				FLA	P LND						
	60	62	1020	61	1020	61	1020				
	70	72	1020	72	1020	71	1020				
	90	92	1020	91	1020	91	1020				
				FL	AP UP						
	70	72	5020	72	5020	71	5020				
	90	94	5030	93	5020	92	5020				
	110	114	5030	113	5020	112	5020				
	133	137	5040	136	5030	135	5020				
				FLA	P T/O						
	60	62	5010	62	5020	61	5010				
5000	70	74	5020	73	5020	72	5020				
	90	93	5030	93	5020	93	5020				
		FLAP LND									
	60	63	5030	62	5020	61	5000				
	70	72	5020	72	5010	71	5010				
	90	92	5020	92	5020	91	5010				
			•	FL	AP UP	·					
	70	72	8020	72	8020	71	8020				
	90	93	8030	92	8020	92	8020				
	110	113	8030	112	8020	112	8020				
	128	131	8040	130	8030	130	8020				
				FLA	P T/O						
0000	60	62	8010	62	8020	61	8010				
8000	70	73	8020	72	8020	72	8020				
	90	92	8030	92	8020	92	8020				
			•	FLA	P LND		·				
	60	61	8020	61	8020	61	8000				
	70	72	8010	71	8010	71	8010				
	90	92	8010	91	8010	91	8010				

2nd Edition, Rev. 0

4. ICAO STANDARD ATMOSPHERE

Examples:

ScopeGivenFindDensity Altitude:A: Pressure altitude = 1600ft
B: Temperature = $20^{\circ}C$ \rightarrow C: Density Altitude = 2550ftISA Temperature:D: Pressure altitude = 1600ft \rightarrow E: ISA Air Temperature = $12^{\circ}C$

5. STALL SPEED

Throttle Le CG: Most F	Weight: 1160 kg (2557 lb) Throttle Lever: IDLE CG: Most Forward (19%) No ground effect												
	BANK			STALL	Speed								
WEIGHT	ANGLE	FLAF	es O°	FLAPS	T/O	FLAPS FULL							
[kg] ([lb])	[deg]	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS						
	0	59	60	53	55	50	52						
1160	15	60	61	54	56	51	53						
(2557)	30	64	65	58	59	54	56						
(FWD C.G.)	45	71	71	64	65	61	62						
	60	85	85	77	78	73	74						

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 350 ft with banking below 15°.

COSTRUZIONA AFRONAUTICHE P2010 - Aircraft Flight Manual Page V5 - 7

6. CROSSWIND

Maximum demonstrated crosswind is 12 kts

 \Rightarrow *Example*:

<u>Given</u>

<u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 kts

Crosswind = 10 kts

Headwind = 17.5 kts

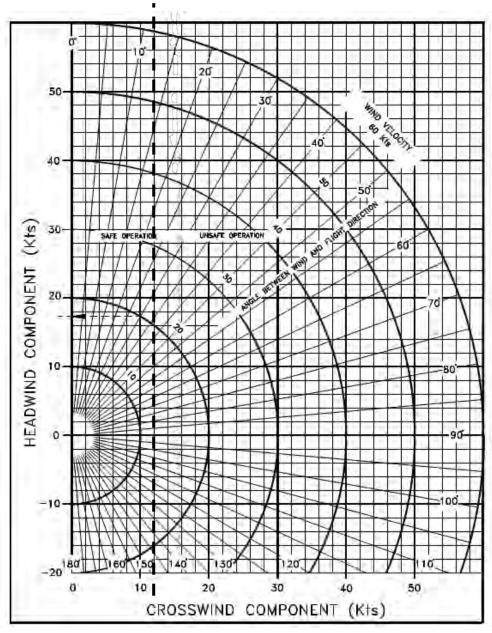


FIG. 5-3. CROSSWIND CHART

EXTECNAM P2010 - Aircraft Flight Manual Page V5 - 8

7. TAKE-OFF PERFORMANCES

NOTE

To account for likely in service performance variations apply a factored to distances of 1.10

Weight = 1160) kg (2557 lb)										
Flaps: T/O		Corr	ections								
Speed at Lift-Off =	60 KIAS	Head	Headwind: -10 m for each kn								
Speed Over 50ft O		Tailwind: +20 m for each kn									
•	eller Lever: Full Forwar	d Gras	d Grass Runway: +10% to Ground Roll								
Runway: Paved			way slope: +:	10% to Grour	nd Roll for eac	ch +1%					
				Distance [m]	1						
Pressure		(Distance [ft])									
Altitude				ture [°C]	17						
[ft]		-25	0	25	50	ISA					
	Crowned Dall	234	295	364	442	336					
C 1	Ground Roll	(768)	(968)	(1194)	(1450)	(1102)					
S.L.		421	526	644	776	595					
	At 50 ft AGL	(1381)	(1726)	(2113)	(2546)	(1952)					
	Ground Roll	256	322	397	482	360					
1000		(840)	(1056)	(1302)	(1581)	(1181)					
1000	At 50 ft AGL	458	572	701	844	637					
		(1503)	(1877)	(2300)	(2769)	(2090)					
	Ground Roll	279	352	434	526	387					
2000		(915)	(1155)	(1424)	(1726)	(1270)					
2000	At 50 ft AGL	499	622	762	918	682					
		(1637)	(2041)	(2500)	(3012)	(2238)					
	Ground Roll	305	384	474	575	415					
3000		(1001)	(1260)	(1555)	(1886)	(1362)					
	At 50 ft AGL	543	678	830	1000	731					
		(1781)	(2224)	(2723)	(3281)	(2398)					
	Ground Roll	333	420	518	628 (2060)	446 (1462)					
4000		(1093)	(1378)	(1699) 904	(2060)	(1463) 783					
	At 50 ft AGL	591 (1939)	738 (2421)	904 (2966)	1089 (3573)	(2569)					
		364	459	566	687	480					
	Ground Roll	(1194)	(1506)	(1857)	(2254)	(1575)					
5000		645	805	986	1188	840					
	At 50 ft AGL	(2116)	(2641)	(3235)	(3898)	(2756)					
	0	399	502	620	752	516					
6000	Ground Roll	(1309)	(1647)	(2034)	(2467)	(1693)					
6000		703	878	1075	1296	901					
	At 50 ft AGL	(2306)	(2881)	(3527)	(4252)	(2956)					

COSTRUZIONI A RENNAUTICHE P2010 - Aircraft Flight Manual Page V5 - 9

<u>Weight = 1060</u>) kg (2337 lb)	Corr	ections							
Flaps: T/O			dwind: -10 m	for each kn						
Speed at Lift-Off =		Tailwind: +20 m for each kn								
•		Grass Runway: +10% to Ground Roll								
Speed Over 50ft C		_	way slope: +1			-h +1%				
-	eller Lever: Full Forward	a Kuin	way slope.			.11 ' 170				
Runway: Paved				<u></u>						
Pressure				Distance [m]						
Altitude				(Distance [ft])					
			Tempera	ture [°C]	1					
[ft]		-25	0	25	50	ISA				
	Ground Roll	189	238	293	356	270				
S.L.		(620)	(781)	(961)	(1168)	(886)				
	At 50 ft AGL	342	427	523	630	483				
		(1122)	(1401)	(1716)	(2067)	(1585)				
	Ground Roll	206	259	320	388	290				
1000		(676)	(850)	(1050)	(1273)	(951)				
	At 50 ft AGL	372	464	569	685	517				
		(1220)	(1522)	(1867)	(2247)	(1696)				
	Ground Roll	225	283	349	424	311				
2000		(738)	(928)	(1145)	(1391)	(1020)				
	At 50 ft AGL	405	505	619	745	554				
		(1329)	(1657)	(2031)	(2444)	(1818)				
	Ground Roll	246	309	382	463	334				
3000		(807)	(1014)	(1253)	(1519)	(1096)				
	At 50 ft AGL	441	550	674	812	593				
		(1447)	(1804)	(2211)	(2664)	(1946)				
	Ground Roll	268	338	417	506	359				
4000		(879)	(1109)	(1368)	(1660)	(1178)				
	At 50 ft AGL	480	599	734	884	636				
		(1575)	(1965)	(2408)	(2900)	(2087)				
	Ground Roll	294	370	456	553	386				
5000		(965)	(1214)	(1496)	(1814)	(1266)				
	At 50 ft AGL	523	653	800 (2625)	964 (2162)	682 (2228)				
		(1716)	(2142)	(2625)	(3163)	(2238)				
	Ground Roll	321	404 (1225)	499 (1627)	605 (1085)	416 (1265)				
6000		(1053)	(1325)	(1637)	(1985)	(1365)				
	At 50 ft AGL	571 (1872)	713	873 (2864)	1052	732				
		(1873)	(2339)	(2864)	(3451)	(2402)				

EXTECNAM P2010 - Aircraft Flight Manual Page V5 - 10

Weight = 960 kg	(2116 lb)								
		Corr	ections						
Flaps: T/O		Head	dwind: -10 m	for each kn					
Speed at Lift-Off =	60 KIAS	Tailwind: +20 m for each kn							
Speed Over 50ft C)bstacle = 65 KIAS	Grass Runway: +10% to Ground Roll							
Throttle and Prop	eller Lever: Full Forwar	d Run	way slope: +1	10% to Groun	d Roll for eac	ch +1%			
Runway: Paved									
D				Distance [m]					
Pressure				(Distance [ft])				
Altitude			Tempera	ture [°C]					
[ft]		-25	0	25	50	ISA			
	Ground Roll	149	187	231	281	213			
S.L.		(489)	(614)	(758)	(922)	(699)			
J.L.	At 50 ft AGL	272	340	416	501	384			
	AL JUIT AGE	(892)	(1115)	(1365)	(1644)	(1260)			
	Ground Roll	162	204	252	306	229			
1000		(531)	(669)	(827)	(1004)	(751)			
	At 50 ft AGL	296	369	452	545	411			
		(971)	(1211)	(1483)	(1788)	(1348)			
	Ground Roll	177	223	275	334	245			
2000		(581)	732)	(902)	(1096)	(804)			
	At 50 ft AGL	322	402	492	593	440			
		(1056)	(1319)	(1614)	(1946)	(1444)			
	Ground Roll	194	244	301	365	264			
3000		(636)	(801)	(988)	(1198)	(866)			
	At 50 ft AGL	350	438	536	645	472			
		(1148)	(1437)	(1759)	(2116)	(1549)			
	Ground Roll	212	266	329	399	283			
4000		(696)	(873)	(1079)	(1309)	(928)			
	At 50 ft AGL	382	477	584	703	506			
		(1253)	(1565)	(1916)	(2306)	(1660)			
	Ground Roll	231	291	360	436	305			
5000		(758)	(955)	(1181)	(1430)	(1001)			
	At 50 ft AGL	416	520	636	766	542			
		(1365)	(1706)	(2087)	(2513)	(1778)			
	Ground Roll	253	319	393	477 (1565)	328			
6000		(830)	(1047)	(1289)	(1565)	(1076)			
	At 50 ft AGL	454	567	694 (2277)	836	582			
		(1489)	(1860)	(2277)	(2743)	(1909)			

COSTRUZIONA A RENOVAUTICHE P2010 - Aircraft Flight Manual Page V5 - 11

8. TAKE-OFF RATE OF CLIMB

NOTE

To account for likely in service performance variations apply a factored to rate of climb of 0.90

Throttle Leve Propeller: 2 Flaps: Take-0									
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]						
5	Altitude	Vy		Tempera	ture [°C]	l			
[kg] ([lb])	[ft]	[KIAS]	-25	0	25	50	ISA		
	S.L.	72	974	808	659	525	717		
	2000	71	848	684	538	406	617		
	4000	70	721	560	417	287	518		
1160	6000	69	596	437	296	169	419		
(2557)	8000	68	470	315	176	51	320		
	10000	67	345	193	56	-67	221		
	12000	67	221	71	-63	-184	122		
	14000	66	96	-51	-182	-300	23		
	S.L.	70	1118	943	787	647	848		
	2000	69	985	813	660	522	744		
	4000	69	853	684	533	397	640		
1060	6000	68	721	555	406	273	536		
(2337)	8000	68	589	426	280	149	431		
	10000	67	458	298	155	26	327		
	12000	66	327	170	29	-97	223		
	14000	66	197	43	-95	-220	119		
	S.L.	69	1288	1103	937	787	1001		
	2000	69	1147	964	801	654	890		
	4000	68	1006	827	666	522	780		
960	6000	68	866	689	532	390	669		
(2116)	8000	67	726	553	398	258	558		
	10000	66	586	416	264	127	448		
	12000	66	447	280	131	-3	337		
	14000	65	309	145	-2	-134	226		

COSTRUZIONA ARRONAUTICHE P2010 - Aircraft Flight Manual Page V5 - 12

9. EN-ROUTE RATE OF CLIMB

NOTE

To account for likely in service performance variations apply a factored to rate of climb of 0.90

Throttle Leve Propeller: 2 Flaps: UP	er: Full Forward 600 RPM								
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]						
	Altitude	V _Y		Tempera	ture [°C]	l			
[kg] ([lb])	[ft]	[KIAS]	-25	0	25	50	ISA		
	S.L.	82	1131	944	776	625	841		
	2000	81	989	804	639	491	729		
	4000	80	846	665	503	357	618		
1160	6000	79	705	526	367	224	506		
(2557)	8000	78	563	388	232	91	394		
	10000	77	423	251	97	-41	282		
	12000	76	282	113	-37	-173	171		
	14000	76	142	-23	-171	-305	59		
	S.L.	82	1284	1085	907	747	976		
	2000	81	1133	937	762	605	857		
	4000	80	982	789	618	463	739		
1060	6000	79	831	642	474	322	621		
(2337)	8000	78	682	496	330	181	502		
	10000	77	532	350	187	40	384		
	12000	76	383	204	45	-99	265		
	14000	75	235	59	-97	-239	147		
	S.L.	81	1465	1251	1060	888	1134		
	2000	80	1302	1092	905	735	1007		
	4000	79	1140	934	749	583	880		
960	6000	78	979	776	595	432	753		
(2116)	8000	77	818	619	441	281	625		
	10000	76	658	462	287	130	498		
	12000	75	498	306	134	-20	371		
	14000	74	339	150	-18	-170	244		

COSTRUZIONA AREANAUTICHE P2010 - Aircraft Flight Manual Page V5 - 13

10. CRUISE PERFORMANCE

Weigh	t: 1160	kg (2557	' lb)							
		ude: 0 ft								
Mixtu	re: FULI		– 30°C	C (-15°C)		ISA (1	ا5°C)	21	V + 30°	°C (45°C)
RPM	MAP [inHg]	PWR [%MCP]	TAS	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])
2700	29.9	113	138	19.2 (72.7)	107	139	18.4 (69.7)	102	141	17.7 (67)
	29.9	109	136	18.7 (70.8)	103	138	17.9 (67.8)	98	139	17.2 (65.1)
	28	101	132	17.6 (66.6)	96	134	16.9 (64)	91	135	16.3 (61.7)
2600	26	90	126	16.1 (60.9)	85	127	15.4 (58.3)	81	128	14.9 (56.4)
2600	24	79	120	14.7 (55.6)	75	121	14.1 (53.4)	71	121	13.6 (51.5)
	22	69	113	13.3 (50.3)	65	113	12.8 (48.5)	62	113	12.4 (46.9)
	20	59	105	11.9 (45)	56	104	11.5 (43.5)	53	103	11.1 (42)
	29.9	103	133	17.9 (67.8)	98	135	17.1 (64.7)	93	136	16.5 (62.5)
	28	95	129	16.8 (63.6)	90	130	16.1 (60.9)	85	131	15.5 (58.7)
2450	26	85	123	15.4 (58.3)	80	124	14.8 (56)	76	125	14.3 (54.1)
2450	24	75	117	14.1 (53.4)	71	117	13.5 (51.1)	67	118	13.1 (49.6)
	22	65	110	12.8 (48.5)	62	110	12.3 (46.6)	59	110	11.9 (45)
	20	55	102	11.5 (43.5)	52	101	11.1 (42)	50	100	10.7 (40.5)
	29.9	100	131	17.4 (65.9)	94	133	16.7 (63.2)	90	134	16.1 (60.9)
	28	91	127	16.2 (61.3)	86	128	15.6 (59.1)	82	129	15 (56.8)
2250	26	81	121	15 (56.8)	77	122	14.4 (54.5)	73	123	13.9 (52.6)
2350	24	72	115	13.7 (51.9)	68	115	13.1 (49.6)	65	115	12.7 (48.1)
	22	62	108	12.4 (46.9)	59	108	12 (45.4)	56	107	11.6 (43.9)
	20	53	99	11.1 (42)	50	98	10.7 (40.5)	48	96	10.4 (39.4)

COSTRUZIONA ARGONAUTICHE P2010 - Aircraft Flight Manual Page V5 - 14

RPM N [i	MAP [inHg]			C (-21°C)			Weight: 1160 kg (2557 lb) Pressure Altitude: 3000 ft Mixture: FULL RICH												
[i	inHg]			/		ISA (9°C)				ISA + 30°C (39°C)									
2700 2	26.8	[/onvice]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])									
2/00 2		104	137	17.9 (67.8)	98	138	17.2 (65.1)	93	139	16.5 (62.5)									
2	26.8	100	135	17.4 (65.9)	94	136	16.7 (63.2)	90	137	16.1 (60.9)									
	26	96	133	16.9 (64)	90	134	16.2 (61.3)	86	135	15.6 (59.1)									
2600	24	85	126	15.4 (58.3)	80	127	14.8 (56)	76	128	14.3 (54.1)									
2000	22	76	128	14.3 (54.1)	70	120	13.5 (51.1)	67	120	13 (49.2)									
	20	63	111	12.6 (47.7)	60	111	12.1 (45.8)	57	110	11.7 (44.3)									
	18	53	101	11.1 (42)	50	99	10.7 (40.5)	47	97	10.4 (39.4)									
2	26.8	94	132	16.6 (62.8)	89	132	15.9 (60.2)	84	133	15.3 (57.9)									
	26	90	129	16.1 (60.9)	85	129	15.4 (58.3)	81	130	14.8 (56)									
2450	24	80	123	14.7 (55.6)	75	123	14.2 (53.8)	72	124	13.7 (51.9)									
2450	22	70	116	13.5 (51.1)	66	116	12.9 (48.8)	63	117	12.5 (47.3)									
	20	60	108	12.1 (45.8)	57	108	11.6 (43.9)	54	107	11.3 (42.8)									
	18	50	97	10.7 (40.5)	47	97	10.4 (39.4)	45	95	10.1 (38.2)									
2	26.8	90	130	16.1 (60.9)	85	131	15.5 (58.7)	81	131	14.9 (56.4)									
	26	86	127	15.6 (59.1)	81	128	15 (56.8)	77	129	14.4 (54.5)									
2350	24	77	121	14.3 (54.1)	72	122	13.8 (52.2)	69	122	13.3 (50.3)									
2330	22	67	114	13.1 (49.6)	64	114	12.6 (47.7)	60	114	12.2 (46.2)									
	20	57	105	11.7 (44.3)	54	105	11.3 (42.8)	51	103	11 (41.6)									
1	18.5	50	98	10.7 (40.5)	47	95	10.4 (39.4)	45	92	10.1 (38.2)									

COSTRUZIONA ARGONAUTICHE P2010 - AIRCRAft Flight Manual Page V5 - 15

Weigh	t: 1160	kg (2557	'lb)							
		ude: 600	0 ft							
Mixtu	r e: FULl		_ 20°C	C (-27°C)		167 (2°C)	IC	V T 5U	°C (33°C)
RPM	МАР	PWR	TAS	F.C.	PWR	ISA (3°C)			TAS	• •
NEIVI	[inHg]	[%MCP]	IAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	IAS [kn]	F.C. [gal/h] ([L/h])
2700	23.9	94	135	16.6 (62.8)	89	136	15.9 (60.2)	84	137	15.3 (57.9)
	23.9	90	133	16.1 (60.9)	85	134	15.5 (58.7)	81	134	14.9 (56.4)
	23	85	130	15.5 (58.7)	80	130	14.8 (56)	76	131	14.3 (54.1)
2600	22	80	126	14.8 (56)	75	127	14.2 (53.8)	72	127	13.6 (51.5)
2000	20	68	117	13.2 (50)	64	117	12.7 (48.1)	61	117	12.3 (46.6)
	19	63	113	12.5 (47.3)	59	112	12 (45.4)	56	111	11.6 (43.9)
	18	57	108	11.7 (44.3)	54	106	11.3 (42.8)	51	104	10.9 (41.3)
	23.9	85	129	15.4 (58.3)	80	130	14.8 (56)	76	131	14.2 (53.8)
	23	80	126	14.8 (56)	75	127	14.2 (53.8)	72	127	13.7 (51.9)
2450	22	75	123	14.1 (53.4)	71	123	13.6 (51.5)	67	123	13.1 (49.6)
2450	20	64	114	12.7 (48.1)	61	114	12.2 (46.2)	58	113	11.8 (44.7)
	19	59	110	12 (45.4)	56	109	11.6 (43.9)	53	107	11.2 (42.4)
	18	54	104	11.3 (42.8)	51	102	10.9 (41.3)	49	99	10.6 (40.1)
	23.9	81	127	15 (56.8)	77	128	14.4 (54.5)	73	128	13.8 (52.2)
	23	77	124	14.3 (54.1)	73	124	13.8 (52.2)	69	124	13.3 (50.3)
2350	22	72	121	13.7 (51.9)	68	121	13.2 (50)	65	120	12.7 (48.1)
2330	20	62	112	12.3 (46.6)	58	111	11.9 (45)	55	110	11.5 (43.5)
	19	57	107	11.7 (44.3)	54	106	11.2 (42.4)	51	103	10.9 (41.3)
	18.5	54	104	11.3 (42.8)	51	102	10.9 (41.3)	49	99	10.6 (40.1)

COTTECNAM P2010 - Aircraft Flight Manual Page V5 - 16

Weigh	Weight: 1160 kg (2557 lb)									
		ude: 900	00 ft							
Mixtu	re: FULI	-								
		ISA ·	– 30°C	C (-33°C)		ISA (-	-3°C)	IS	A + 30°	°C (27°C)
RPM	MAP [inHg]	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])
2700	21.3	85	133	15.4 (58.3)	80	133	14.7 (55.6)	76	133	14.2 (53.8)
	21.3	81	130	15 (56.8)	77	131	14.3 (54.1)	73	131	13.8 (52.2)
2600	20	73	124	13.8 (52.2)	69	124	13.3 (50.3)	65	123	12.8 (48.5)
2000	19	67	119	13.1 (49.6)	64	119	12.6 (47.7)	60	118	12.1 (45.8)
	18	62	114	12.3 (46.6)	58	113	11.9 (45)	55	111	11.5 (43.5)
	21.3	77	127	14.3 (54.1)	72	127	13.7 (51.9)	69	127	13.2 (50)
2450	20	69	121	13.3 (50.3)	65	121	12.8 (48.5)	62	119	12.3 (46.6)
2450	19	64	116	12.6 (47.7)	60	115	12.1 (45.8)	57	114	11.7 (44.3)
	18	59	111	11.9 (45)	55	109	11.4 (43.2)	52	106	11.1 (42)
2350	19	66	121	12.9 (48.8)	62	120	12.4 (46.9)	59	117	11.9 (45)
2350	18	60	115	12.2 (46.2)	57	113	11.7 (44.3)	54	110	11.3 (42.8)
		-	_							

Weight: 1160 kg (2557 lb) Pressure Altitude: 12000 ft Mixture: FULL RICH

		ISA – 30°C (-39°C)			ISA (-9°C)			ISA + 30°C (21°C)		
RPM	MAP [inHg]	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])
2700	19	75	128	14.1 (53.4)	70	128	13.5 (51.1)	67	128	13 (49.2)
2600	19	72	126	13.7 (51.9)	68	126	13.2 (50)	64	125	12.7 (48.1)
2000	18	66	121	13 (49.2)	63	120	12.4 (46.9)	59	118	12 (45.4)
2450	19	68	123	13.2 (50)	64	122	12.7 (48.1)	61	121	12.2 (46.2)
2450	18	63	118	12.5 (47.3)	59	116	12 (45.4)	56	113	11.6 (43.9)
2250	19	66	121	12.9 (48.8)	62	120	12.4 (46.9)	59	117	11.9 (45)
2350	18	60	115	12.2 (46.2)	57	113	11.7 (44.3)	54	110	11.3 (42.8)

COSTRUZIONA AERONANTICHE P2010 - Aircraft Flight Manual Pag

11. LANDING PERFORMANCES

NOTE

To account for likely in service performance variations apply a factored to distances of 1.67

Weight = 1160 kg (2557 lb)

Flaps: LAND Short Final Approach Speed = 66 KIAS Throttle Lever: Idle Runway: Paved Headwind: -4 m for each kn Tailwind: +13 m for each kn Grass Runway: +10% to Ground Roll Runway slope: -3% to Ground Roll for each +1%

Corrections

Pressure				Distance [m	-			
Altitude		(Distance [ft]) Temperature [°C]						
[ft]		-25	lempera 0	25	50	ISA		
S.L.	Ground Roll	204 (669)	225 (738)	245 (804)	266 (873)	237 (778)		
5.L.	At 50 ft AGL	488 (1601)	509 (1670)	529 (1736)	550 (1804)	521 (1709)		
1000	Ground Roll	212 (696)	233 (764)	254 (833)	276 (906)	244 (801)		
1000	At 50 ft AGL	496 (1627)	517 (1696)	538 (1765)	560 (1837)	528 (1732)		
2000	Ground Roll	220 (722)	242 (794)	264 (866)	286 (938)	251 (823)		
2000	At 50 ft AGL	504 (1654)	526 (1726)	548 (1798)	570 (1870)	535 (1755)		
3000	Ground Roll	228 (748)	251 (823)	274 (899)	297 (974)	259 (850)		
3000	At 50 ft AGL	512 (1680)	535 (1755)	558 (1831)	581 (1906)	543 (1781)		
4000	Ground Roll	236 (774)	260 (853)	284 (932)	308 (1010)	267 (876)		
4000	At 50 ft AGL	520 (1706)	544 (1785)	568 (1864)	592 (1942)	551 (1808)		
5000	Ground Roll	245 (804)	270 (886)	295 (968)	320 (1050)	275 (902)		
5000	At 50 ft AGL	529 (1736)	554 (1818)	579 (1900)	604 (1982)	559 (1834)		
6000	Ground Roll	255 (837)	280 (919)	306 (1004)	332 (1089)	284 (932)		
8000	At 50 ft AGL	539 (1768)	564 (1850)	590 (1936)	616 (2021)	568 (1864)		

 2^{nd} Edition, Rev. 0

Section 5 - Performances LANDING PERFORMANCES

EXTECNAM P2010 - Aircraft Flight Manual Page V5 - 18

12. BALKED LANDING PERFORMANCE

To account for likely in service performance variations apply a factored to rate of climb and to angle of climb of 0.90

Throttle and Propeller Lever: Full Forward Flaps: LAND Speed: 67 KIAS								
Weight	Pressure	Steady Gradient of Climb [%]						
weight	Altitude		Tempera	ture [°C]				
[kg] ([lb])	[ft]	-25	0	25	50	ISA		
	S.L.	10.9	8.6	6.6	4.7	7.4		
	1000	10.0	7.8	5.7	3.9	6.7		
	2000	9.2	6.9	4.9	3.1	6.0		
1160	3000	8.3	6.1	4.1	2.3	5.3		
(2557)	4000	7.4	5.2	3.2	1.4	4.6		
	5000	6.6	4.4	2.4	0.6	3.9		
	6000	5.7	3.5	1.6	-0.2	3.3		
	7000	4.8	2.7	0.7	-1.0	2.6		
	S.L.	12.9	10.4	8.1	6.1	9.0		
	1000	11.9	9.4	7.2	5.2	8.3		
	2000	11.0	8.5	6.3	4.3	7.5		
1060	3000	10.0	7.6	5.4	3.4	6.8		
(2337)	4000	9.1	6.7	4.5	2.5	6.0		
	5000	8.1	5.7	3.6	1.7	5.3		
	6000	7.2	4.8	2.7	0.8	4.5		
	7000	6.2	3.9	1.8	-0.1	3.8		
	S.L.	15.2	12.4	10	7.7	10.9		
	1000	14.1	11.4	9.0	6.7	10.1		
	2000	13.1	10.4	7.9	5.8	9.3		
960	3000	12.0	9.3	6.9	4.8	8.4		
(2116)	4000	11.0	8.3	5.9	3.8	7.6		
	5000	10.0	7.3	4.9	2.8	6.8		
	6000	8.9	6.3	3.9	1.8	6.0		
	7000	7.9	5.3	2.9	0.9	5.2		

2nd Edition, Rev. 0

Section 5 - Performances

BALKED LANDING PERFORMANCE

NOTE

13. NOISE DATA

Noise level, determined in accordance with ICAO/Annex 16 6th Ed., July 2011, Vol. I°, Chapter 10 and 14 CFR 36.1581(c), is **80.58** dB(A).

NOTE: No determination has been made by the Federal Aviation Administration that the noise levels of this aircraft are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

EXTECNAM P2010 - Aircraft Flight Manual Page V5 - 20

INTENTIONALLY LEFT BLANK

Supplement D02: pages replacement instructions

SECTION 7 – AIRCRAFT AND SYSTEMS DESCRIPTION

Make sure you first applied instructions reported on the basic AFM, Section 7 Aircraft and Systems Description

Supplement D02 – Performances page		AFM Section 7 page
V7-10 thru 11	REPLACES	Page 7-10 thru 11 of AFM, Section 7
V7-16	REPLACES	Page 7-16 of AFM, Section 7
V7-27	REPLACES	Page 7-27 of AFM, Section 7
V7-36	REPLACES	Page 7-36 of AFM, Section 7

Apply following pages replacement:

2nd Edition. Rev. 0

Page D02-16

EXTECNAM P2010 - Aircraft Flight Manual Page D02-17

INTENTIONALLY LEFT BLANK

 2^{nd} Edition, Rev. 0

Section 9 – Supplements Supplement no. D02 – Variable pitch propeller COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page V7-10

4.1 ENGINE CONTROL LEVER

Engine handling is via three levers: Throttle, RPM lever, Mixture control lever.

They're situated on the center control; the use of "front/forward" and "rear/backward" is defined in relation to the direction of flight (longitudinal).

Mixture control lever

This lever (right hand lever with red handle) controls the fuel-air mixture, which is supplied to the engine.

With the lever full forward, extra fuel is being supplied to the engine which at higher performance setting contributes to engine cooling.

In cruise, the mixture should be made leaner in order to reach the appropriate fuel-air mixture. The leaning procedure is given in Chapter 4.

Lever forward (RICH) >> Mixture rich (in fuel)

Lever to rear (LEAN) >>Mixture lean (in fuel)

To shut off the engine the mixture control lever is pulled to the rear stop: air without fuel is drawn into the cylinders that shuts down.

<u>Throttle</u>

This lever (left hand with large knob) is used to control manifold pressure (MAP).

High manifold pressure means a large quantity of fuel-air mixture is being supplied to engine, while low manifold pressure means a lesser quantity of fuel-air mixture is being supplied.

Propeller lever

By means of this lever (central lever with blue handle) the propeller governor controls the propeller pitch, and consequently engine RPM. A selected RPM is held constant by the governor independent of the airspeed and the throttle setting.

Lever forward (HIGH RPM) = fine pitch

Lever rearward (LOW RPM) = coarse pitch

Following a defect in governor or oil system, the blades go to the finest possible pitch (maximum RPM), thus allowing continuation of the flight.

Following failure of the governor or a serious drop in oil pressure, the RPM should be adjusted using the throttle. Every effort should be made not to exceed 2700 RPM.

The throttle and RPM lever should be moved slowly, in order to avoid over-speed and excessively rapid RPM changes.

Section 9 – Supplements ENGINE CONTROLS COSTRUZIONI AFROMAUTICHE P2010 - Aircraft Flight Manual Page V7-11

4.2 ALTERNATE AIR

Alternate Air knob is located on the central pedestal; when the knob is fully pulled outward from the instrument panel, injectors receive maximum hot air. During normal operation, the knob is set in OFF position.

4.3 DEFROST AND CABIN HEAT

Two knobs, located on the lower side of the central pedestal, allow Defrost and Cabin Heat function. The one marked as "Defrost and Cabin Heat" allows hot air to perform windshield defrost and partially cabin heat.

The cabin heat control knob, when fully outward, allows cabin to receive maximum hot air. When both cabin heat and defrost and cabin heat are pulled, air is partitioned.

Fig. 7-9. CENTRAL PEDESTAL

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page V7-16

7. POWERPLANT

7.1. ENGINE

Manufacturer	Lycoming Textron
Model	IO-360-M1A
Type Certificate	EASA TCDS no. IM.E.032
Engine type	Fuel injected (IO), direct drive, four cylinder horizontally opposed, air cooled with down exhaust outlets.
Maximum power Maximum continuous power	134.0 kW (180hp) @ 2700 rpm 129.2 kW (173.3hp) @ 2600 rpm

Oil Consumption					
Operation	RPM	HP	Max.	*Max.	
			Oil Cons.	Cyl. Head	
			Qts./Hr.	Temp.	
Normal Rated	2700	180	.80	500°F (260°C)	
Performance Cruise (75%)	2450	135	.45	500°F (260°C)	
Economy Cruise (60R Rated)	2350	117	.39	500°F (260°C)	

7.2. **PROPELLER**

Manufacturer	MT Propeller
Model	MTV-15-B/193-52
Type Certificate	EASA TCDS no. P.098
Blades/hub	wood/composite 2-blades - aluminium hub
Diameter	1930 mm (6,33 ft) no reduction allowed
Туре	Variable pitch
Governor	
Manufacturer	MT Propeller
Model	P-860-23:
Туре	Hydraulic

COSTRUZIONA ARTICLE P2010 - Aircraft Flight Manual Page V7-27

7.1. INTERNAL LIGHTS

On the cabin ceiling are located four map lights, two in the front area (pilot) and two in the rear area (passengers).

In the central area of the cabin ceiling is located a spot light used to illuminate the pedestal during night flight operations. All ceiling lights are dimmable by a dedicated dimmer.

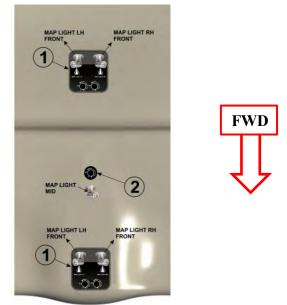


FIG.7-18. CABIN CEILING LIGHTS LAYOUT

The instrument panel can be illuminated by 8 incandescence light strips, all dimmable.

FIG.7-19. INSTRUMENT PANEL LIGHTS LAYOUT

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page V7-36

Pedestal placards:

Supplement no. D03

AFMS FOR ALTERNATIVE AVIONICS CONFIGURATION

Rev	Revised	Revised Description of		enam Appro	EASA Approval or Under DOA	
Nev	page Revision	DO	OoA	HDO	Privileges	
0	-	First Issue	D. Ronca	M. Oliva	M. Oliva	

Record of Revisions

List of Effective Pages

	Page	
Cover Pages	Cover Pages D03-1 thru 22	
Section 2 2G-10, 2G-13		Rev. 0
Section 3	Section 3 3G-5 thru 7, 3G-10, 3G-16 thru 17, 3G-25	
Section 4	Section 4 4G-4 thru 5, 4G-9, 4G-15 thru 18, 4G-20, 4G-24	
Section 6	6G-11 thru 12	Rev. 0
Section 7	7G-8 thru 9, 7G-20 thru 24, 7G-27	Rev. 0

INDEX

INTRODUCTION	3
Section 1 – GENERAL	5
Section 2 – LIMITATIONS	7
Section 3 – EMERGENCY PROCEDURES	10
Section 4 – NORMAL PROCEDURES	13
Section 5 – PERFORMANCE	16
Section 6 – WEIGHT AND BALANCE	18
Section 7 – AIRFRAME AND SYSTEMS DESCRIPTION	20
Section 8 – GROUND HANDLING & SERVICE	22

INTRODUCTION

The information contained herein supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per Garmin G500 in subject.

It is the owner's responsibility to replace the mentioned pages in accordance with the instructions herein addressed section by section.

INTENTIONALLY LEFT BLANK

Supplement D03: pages replacement instructions

SECTION 1 – GENERAL

Make sure you first applied instructions reported on the basic AFM, Section 1 General

According to A/C configuration refer to the basic AFM, Section 1 - General

Ed. 1, Rev. 0

INTENTIONALLY LEFT BLANK

Supplement D03: pages replacement instructions

SECTION 2 - LIMITATIONS

Make sure you first applied instructions reported on the basic AFM, Section 2 Limitations

According A/C configuration apply following pages replacement:

Supplement D03 LIMITATIONS page		AFM Section 2 page
2G-13	REPLACES	Page 2-13 of basic AFM, Section 2

INTENTIONALLY LEFT BLANK

18. KINDS OF OPERATION EQUIPMENT LIST (KOEL)

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day/Night and IFR Day/Night. Flight in VFR Day/Night and IFR is permitted only if the prescribed equipment is installed and operational. Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the airspace classification and route to be flown.

The owner is responsible for fulfilling these requirements.

Equipment	VFR Day	VFR Night	IFR Day	IFR Night	Note	
External Power		v				
Circuit Breakers	•	•	•	•	As Required	
Battery	•	•	•	•	-	
Safety Equipment & Furnishing						
First Aid kit	•	•	•	•		
Fire extinguisher	•	•	•	•		
ELT	•	•	•	•		
Torch (with spare batt.)	-	•	-	•		
Ice Protection		-		-		
Pitot heating system		•	•	•		
Landing Gear		•	_			
Wheel pants					Removable	
Lights						
Lights Landing/taxi lights	•	•	•	•		
Strobe lights	•	•	•	•		
NAV lights	•	•	•	•		
Cabin lights	•	•	•	•		
Instrument lights		•		•		
Emergency light		•		•		
Dimming Devices		•		•		
Day/Night switch		•		•		
		•		•		
COM/Navigation/Engine pa		<u> </u>		-		
Magnetic compass	•	•	•	•		
GARMIN G500 Suite	•	•	•	•		
GDU 620 (PFD/MFD)	•	•	•	•		
MD 302 suite	•	•	•	•		
GTN 650	•	•	•	•		
GNC 255A	•	•	•	•		
GMA 340	•	•	•	•		
DME Indicator-KDI 572	•	•	•	•		
ADF system - KR 87	•	•	•	•		
JP Instruments EDM 930	•	•	•	•		
Remote Alarm Display	•	•	•	•		
Pitot system	•	•	•	•		
Clock	•	•	•	•		
Flight Controls						
Pitch trim indicator	•	•	•	•		
Flap System	•	•	•	•		
Flaps position lights	•	•	•	•		
Rudder trim indicator	•	•	•	•		
Rudder trim system	•	•	•	•	only for VFR operations, rudder trim system may be inoperative provided the trim tab is fixed in the streamlined position and the system is electrically disabled	
Stall warning system	•	•	•	•		
Stant warming system	VFR Day	VFR Night	IFR Day	IFR Night		
	VFR Day	VER NIGHT	ігк раў	IFK NIGHT		

Supplement D03: pages replacement instructions

SECTION 3 – EMERGENCY PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 3 Emergency Procedures

Supplement D03 EMERGENCY PROCEDURES page		AFM Section 3 page
3G-5	REPLACES	3-5 of basic AFM, Section 3
3G-6	REPLACES	3-6 of basic AFM, Section 3
3G-7	REPLACES	3-7 of basic AFM, Section 3
3G-10	REPLACES	3-10 of basic AFM, Section 3
3G-16	REPLACES	3-16 of basic AFM, Section 3
3G-17	REPLACES	3-17 of basic AFM, Section 3
3G-25	REPLACES	3-25 of basic AFM, Section 3

According A/C configuration apply following pages replacement:

Ed 1, Rev. 0

2. FAILURES INDICATED ON THE ANNUNCIATION PANEL

The annunciator panel, located on the centre of the instrument panel, contains 9 lights for warnings, cautions and advisories. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
RED:	to indicate emergency conditions
WHITE:	to indicate advisory messages

2.1 ALTERNATOR FAILURE

If ALT FAIL caution is ON:

1.	Circuit breaker(s)	Check
2.	Generator SWITCH	OFF

3. Generator SWITCH..... ON

If ALT FAIL CAUTION REMAINS on:

4. Generator SWITCH..... OFF

A fully charged battery shall supply electrical power for at least 30 minutes.

P2010 - Aircraft Flight Manual

Page 3G-6

2.2 PITOT HEATING SYSTEM FAILURE

When the Pitot Heating system is activated, the green **PITOT HEAT ON** advisory light turns on and the amber **PITOT HEAT** caution light turns **OFF**, indicating that the Pitot Heating system is functioning properly.

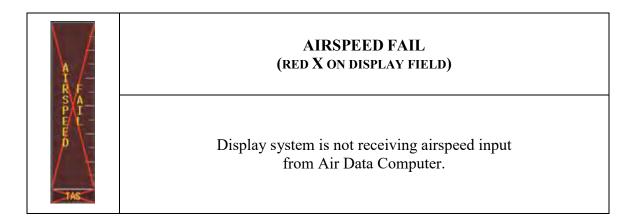
If the amber **PITOT HEAT** caution light is **ON** when the green **PITOT HEAT ON** light is on, then the Pitot Heating system is not functioning properly.

In this case apply following procedure:

- 1. Pitot heat switch OFF
- 2. Pitot heat circuit breaker CHECK IN
- 3. Pitot heat switch ON
- 4. **PITOT HEAT** caution light *CHECK*

if the amber light stays ON, avoid visible moisture and OATs below 10° C.

3. G500 System Failures


3.1 LOSS OF INFORMATION DISPLAYED

When a LRU or a LRU function fails, a large red "X" is typically displayed on the display field associated with the failed data.

In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window.

3.2 LOSS OF AIRSPEED INFORMATION

INSTRUCTION: revert to standby instrument

COSTRUZION AERONAUTICHE P2010 - Aircraft Flight Manual Page 3G-10

3.7 DISPLAY FAILURE

In case of display failure refer to backup instrument (MD302) for primary flight information, and to GTN650 for navigation information.

3.8 LOW FUEL QUANTITY LEFT

1. Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

Section 3 – Emergency procedures AVIONIC SUITE FAILURES AND LOW FUEL QUANTITY

AFMS N°D03 FOR ALTERNATIVE AVIONICS CONFIGURATION

E P2010 - Aircraft Flight Manual

Page 3G-16

6.7 OIL PRESSURE LIMITS EXCEEDANCE

LOW OIL PRESSURE

If oil pressure is under the lower limit (25 psi)

- 1. Throttle Lever REDUCE to minimum practical
- 2. Mixture Lever as required
- 3. OIL TEMP CHECK within limits
- 4. OIL PRESS CHECK

If oil pressure does not increase and temperature remains within limits

Monitor oil and cylinder head temperatures. Land as soon as practicable.

If oil pressure does not increase and temperature exceeds limits

Reduce engine power to minimum required. Land as soon as possible applying Forced landing procedure. *(See Para 11)* Be prepared for engine failure and emergency landing.

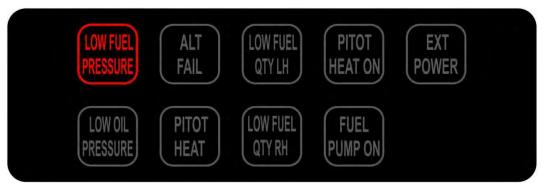
If oil pressure tends to zero (combined with vibration, loss of oil, unusual metallic smoke and noise)

Apply Forced landing procedure. (See Para 11)

HIGH OIL PRESSURE

If oil pressure exceeds upper limit (115 psi)

- 1. Throttle Lever first REDUCE engine power by 10%
- 2. Mixture Lever as required
- 3. OIL PRESS CHECK


If oil pressure does not increase

4. Land as soon as possible applying Forced landing procedure. (See Para 11)

NOTE

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

6.8 LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit (14 psi)

- 1. Electric fuel pump.....ON
- 2. Fuel selector valve......Select opposite fuel tank if NOT empty
- 3. Fuel quantityCHECK

If fuel pressure doesn"t build up:

1. Land as soon as practical. Prepare for potential engine failure and prepare to apply *Forced landing procedure*. (See Para 11)

6.9 HIGH FUEL PRESSURE

If fuel pressure increases above the upper limit (35 psi)

1. Land as soon as possible. Prepare for potential engine shut down and apply *Forced landing procedure*. (See Para 11)

Possible injector failure or obstruction.

EXTECNAM P2010 - Aircraft Flight Manual Page 3G-25

10. OTHER EMERGENCIES

10.1 Loss of Essential Bus

In case of loss of essential bus, the following will be lost (related breakers are listed):

PFD/MFD	FLAP ACTUATOR
COM1	PITOT HEAT
GPS/NAV1	STROBE LIGHT
EIS	LANDING LIGHT
FUEL PUMP	AHRS
FIELD	ADC
STALL WARNING	ANN. PANEL
XPDR	

Electrical power from Alternator is lost, battery will automatically provide energy (duration at least 30 min.).

Pilot will need to make reference to standby instrument for primary flight information and parameters.

Pilot will be able to use the audio panel and COM2/NAV2.

Engine parameters and related warnings/cautions are lost.

Flaps extension and retraction will be lost, apply Flaps control failure procedure (See Para 10.6).

Strobe and landing lights will be lost, NAV and taxi lights are still available; taxi light will be the only visual aid for landing in night conditions.

10.2 Loss of Main Bus

In case of loss of main bus, the main bus voltage will drop to zero.

The following will be lost (related breakers are listed):

AUDIO PANEL	NAV LIGHT	INSTRUMENT (clock,	
	NAV LIGHT	pitch trim indic.)	
A.D.I. (available running on internal bat-	TAXI LIGHT	COM2	
tery power)			
INSTR. LIGHT	28/12 VDC CONVERTER	NAV2	
CABIN LIGHT	RUDDER TRIM ACTUATOR	ADF	
START	12VDC SOCKET	DME	

Fail safe operation of audio panel allows pilot to transmit and use COM1 using headphones only; speakers will not be available.

For night flights, all instrument lights will be lost, but emergency light will still be available.

Supplement D03: pages replacement instructions

SECTION 4 – NORMAL PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 4 Normal Procedures

According A/C configuration apply following pages replacement:

Supplement D03 – NORMAL PROCEDURES page		AFM Section 4 page
4G-4	REPLACES	Page 4-4 of basic AFM, Section 4
4G-5	REPLACES	Page 4-5 of basic AFM, Section 4
4G-9	REPLACES	Page 4-9 of basic AFM, Section 4
4G-15	REPLACES	Page 4-15 of basic AFM, Section 4
4G-16	REPLACES	Page 4-16 of basic AFM, Section 4
4G-17	REPLACES	Page 4-17 of basic AFM, Section 4
4G-18	REPLACES	Page 4-18 of basic AFM, Section 4
4G-20	REPLACES	Page 4-20 of basic AFM, Section 4
4G-24	REPLACES	Page 4-24 of basic AFM, Section 4

2. IFR FLIGHT: G500 GROUND TRAINING PRE-REQUISITES

The aircraft is equipped with a Garmin G500 avionic suite that integrates radio aids navigation with GPS navigation, providing an outstanding capability to support IFR flight, from basic instrument flight training to complex IFR scenario.

NOTE

Depending on national regulations, in some countries flying IFR with a single engine aircraft without autopilot installation and/or single pilot may or may not be allowed, any customer must pay careful attention to check limitations that may apply.

The use of G500 software requires full system knowledge (Garmin applicable manual with specific peculiar limitations), careful preparation, ground and preflight training before flight.

Furthermore, as a minimum during training, it's strongly recommended using the avionic suite in IFR with incremental steps after initial basic IFR instruction:

- 1. Initial use of a single radio-aids (No GPS);
- 2. Use of two radio-aids (No GPS);
- 3. Use of GPS for point to point navigation (No approaches);
- 4. Use of VNAV feature;
- 5. Full use of avionic suite.

The flight training syllabus for IFR instruction will need to address this incremental approach in order to give pilots awareness of full avionic potential, and to highlight the complexity of single pilot usage of G500 Garmin suite enroute or inside high density airspace structure.

CAUTION

During IFR flight, the workload that may develop using full avionic suite could get high in single pilot; pilot planning is important and essential in order to correctly address all avionic functions and aids.

Considering the complexity of the G500 suite, sound judgment will be required (weather, airspace complexity, pilot skills) to assess the best option for IFR steer guidance.

AFMS N°D03 FOR ALTERNATIVE AVIONICS CONFIGURATION

COSTRUZIONA A REPORTANTICHE P2010 - Aircraft Flight Manual

NOTE

The necessity to correct or modify flight plans in the Garmin G500 under these conditions may distract pilots from basic handling causing deviations from assigned parameters, so careful attention must be exercised to avoid deviations on flying parameters.

It's highly recommended to continue cross-checking flight parameters when entering flight data into the G500, especially when trying to create / insert arrival and departure procedures and / or VNAV profiles as the quantity of actions needed is high and may distract pilots from basic and precise handling.

The following prescriptions, other than those already present in the G500 manual, shall be observed:

- Use of GPS for precision approach navigation mode is not allowed.
- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;
- Use of GPS is prohibited for IFR in terminal area or in non-precision approach operations;

If Receiver Autonomous Integrity Monitoring (RAIM) function becomes unavailable in enroute phase of flight, position must be verified every 15 minutes using other IFR approved navigation system.

Turbulence and / or Crosswind:

Presence of moderate to heavy turbulence and / or strong crosswind conditions (above 20 kts crosswind) will require high drift angle to correct for wind (above 15° drift) and highly reduce spare capabilities to do other concurrent tasks inside the cockpit other than precise flying.

4. PRE-FLIGHT INSPECTION

Before each flight, it is necessary to carry out a complete aircraft check including a cabin inspection followed by an external inspection, as below detailed.

4.1 CABIN INSPECTION

- 1. Aircraft documents (ARC, Certificate of Airworthiness, Noise certificate, Radio COM certificate, AFM): *check current and on board*
- 2. Weight and balance: calculate (ref. to Section 6) and check within limits
- 3. Breaker: *all IN*
- 4. Safety belts: connected to hard points, check condition
- 5. Ignition key: OFF, key extracted
- 6. Master switch: ON
- 7. Voltmeter: *check within the limits*
- 8. Lights: all ON, check for operation
- 9. Annunciator panel: check all lights
- 10. Acoustic stall warning: check for operation
- 11. Master switch: OFF
- 12. Baggage: check first aid kit, ELT, fire extinguisher, luggage secured with restraint net.

5. CHECKLISTS

5.1 BEFORE STARTING ENGINE (AFTER PREFLIGHT INSPECTION)

- 1. Seat position and safety belts: *adjust*
- 2. Flight controls: operate full stroke checking for movement smoothness, free of play and friction.
- 3. Parking brake: engage
- 4. Throttle friction: adjust
- 5. Throttle: *IDLE*
- 6. Mixture control Lever: LEAN
- 7. Circuit Breakers: check all IN
- 8. Master switch: ON, wait EDM930 turn on, Check ALT OUT caution ON, Check LOW FP and LOW OP warning ON
- 9. <u>Only before the first flight of the day:</u>

Standby Instrument: Check no red crosses displayed.

- a. Press and hold the control knob (approx. 2 sec)
- b. Rotate the knob selecting "INFO>" page then press it
- c. Select "BATTERY INFO" page then press the knob
- d. Check "CHARGE (%)" to be more than 80%, then exit menu
- 10. Avionic Master switch: ON
- 11. Fuel quantity: compare the fuel quantity indicators information with fuel quantity visually checked into the tanks (see Pre-flight inspection External inspection), then update the EDM930 fuel content in the totalizer accordingly)

The totalizer function available on EDM930 Engine page allows input only up to 230lts (maximum usable fuel). Initial Fuel indication on totalizer must be corrected manually (as it does not use the aircraft fuel quantity indicators as input). Once correctly initialized, fuel consumption on totalizer is very precise as it take instantaneous fuel flow for computation.

- 12. Electric fuel pump: ON (check for audible pump noise and increase of fuel pressure)
- 13. Warning "LOW FUEL PRESSURE": extinguished
- 14. Electric fuel pump: OFF
- 15. Flap control: cycle fully extended and then set to T/O
- 16. Pitch Trim: cycle fully up and down, then set to NEUTRAL
- 17. Rudder trim: cycle full right and left, then set to NEUTRAL

Pitch trim position other than in neutral position would affect take off performance and take off rotation execution at the correct V_R .

18. Nav & Strobe lights: ON

In absence of RH seat occupant: fasten seat belts around the seat in order to prevent any interference with the aeroplane flight control operation and with rapid egress in an emergency.

19. Doors: Closed and locked

CHECKLISTS

AFMS N°DO3 FOR ALTERNATIVE AVIONICS CONFIGURATION **EXECUTATION** P2010 - Aircraft Flight Manual Page 4G-16

5.2 ENGINE STARTING

(a) Cold engine

- 1. Engine throttle: *1cm above idle*
- 2. Fuel selector valve: *select the tank with less fuel*
- 3. Electric fuel pump: *ON*
- 4. Mixture: full open for 3 5" (positive fuel flow indication) then CUT-OFF
- 5. Propeller area: check that area is clear of persons / objects

Check to insure no person or object is present in the area close to the propeller. Forward lower sector visibility is not possible from inside the cockpit.

Do not overheat the starter motor. Do not operate it for more than 10 seconds. After operating the starter motor, let it cool off for 20 seconds. After 6 attempts to start the engine, let the starter cool off for half an hour.

- 6. Ignition key: *BOTH*
- 7. Ignition key: *START*

When engine start turning and first indication of a starting condition exist:

- 8. Mixture: *rapidly move to FULL RICH*
- 9. Throttle: set 1000 1200 RPM
- 10. Check oil pressure rises within 10 sec.
- 11. Check "OIL PRESSURE LOW": extinguished
- 12. Electric fuel pump: *OFF*
- 13. Check fuel pressure: within limits
- 14. Generator switch: ON
- 15. Voltmeter: increase and check within green arc
- 16. ALT FAIL caution: extinguished

NOTE

Avoid idling operations on the ground for optimum engine operation, maintain 1000-1200 RPM, do not exceed 2200 RPM on the ground.

- 17. Engine instruments: Check within limits
- 18. Check for annunciator panel with no cautions

(b) Warm engine

- 1. Engine throttle: idle
- 2. Fuel selector valve: *select the tank with less fuel*
- 3. Electric fuel pump: *ON*
- 4. Propeller area: check for area clear of persons / objects

Check to insure no person or object is present in the area close to the propeller. Forward lower sector visibility is not possible from inside the cockpit.

Do not overheat the starter motor. Do not operate it for more than 10 seconds. After operating the starter motor, let it cool off for 20 seconds. After 6 attempts to start the engine, let the starter cool off for half an hour.

- 5. Ignition key: *BOTH*
- 6. Ignition key: *START*

When engine start turning and first indication of a starting condition exist:

- 7. Mixture: rapidly move to FULL RICH
- 8. Throttle: *set 1000 1200 RPM*
- 9. Check oil pressure rises within 10 sec.
- 10. Check "OIL PRESSURE LOW": extinguished
- 11. Electric fuel pump: *OFF*
- 12. Check fuel pressure within limits
- 13. Generator switch: *ON*
- 14. Voltmeter: increase and check within green arc
- 15. ALT FAIL caution: *extinguished*

NOTE

Avoid idling operations on the ground for optimum engine operation, maintain 1000-1200 RPM, do not exceed 2200 RPM on the ground.

- 16. Engine instruments: check within green arc
- 17. Check for annunciator panel with no cautions

COSTRUZIONI AERONAUTICHE P2010 - Aircraft Flight Manual Page 4G-18

5.3 BEFORE TAXIING

- 1. Flight instruments and avionics: set, TEST functions
- 2. Altimeter: set
- 3. Pitot Heat: ON, test for ammeter indication, then OFF
- 4. Taxi light: ON
- 5. Parking brake: OFF

When taxiing at close range to other aircraft, or during night flight in clouds, fog or haze, the strobe lights should be switched OFF. The NAV lights must always be switched ON during night procedures.

5.4 TAXIING

- 1. Parking brake: Release
- 2. Brakes: check
- 3. Flight instruments: check altimeter.

NOTE

Avoid prolonged idling during taxi.

Alternator lights may appear when reducing engine RPM below 950 RPM (yellow a. The light will stay ON until RPM is increased above.

During taxi, it is recommended to maintain propeller speed at 1000RPM or above in

CAUTION

order to preserve a full loaded battery, minimise annunciator nuisance and assure maximum battery performance during flight. Furthermore this is particularly true during cold weather to prevent lead fouling of spark plugs.

Following extended operation on the ground, or at high ambient temperatures, the following indications of fuel vapor lock may appear:

- Arbitrary changes in idle RPM and fuel flow;
- Slow reaction of the engine to operation of throttle;
- Engine will not run with throttle in IDLE position.

CAUTION

Solution:

1. For about 1 to 2 minutes, or until the engine settles, run at a speed of 1800 to 2000 RPM. Oil and cylinder head temperatures must stay within limits.

2. Pull throttle back to IDLE to confirm smooth running.

3. Set throttle to 1200 RPM and mixture for taxiing, i.e., use mixture control lever to set the maximum RPM attainable.

4. Immediately before the take-off run set the mixture for take-off, apply full throttle and hold this position for 10 seconds.

NOTE

Vapor lock can be avoided if the engine is run at speeds of 1800 RPM or more.

P2010 - Aircraft Flight Manual Page 4G-20

5.6 TAKEOFF

K TECNAM

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixtu may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

NOTE

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft dena altitude or higher.

During climb, a rough method of correctly leaning is to slowly reduce mixture lever until increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

- 1. Pitot HEAT: ON if required
- 2. Fuel pump: ON
- 3. Brakes: apply
- 4. Throttle: FULL and check approximately 2100 ± 100 RPM

Engine proper performance at full throttle shall be checked early in the ground roll in order to abandon tak-off if necessary.

A rough engine, sluggish RPM increase or failure to reach take-off RPM are reasons for abandoning the take-off. If the engine oil is cold, an oil pressure in the yellow sector is permissible.

- 5. Engine instruments: check parameters within the limits
- 6. Brakes: Release
- 7. Rotation speed V_R: 60 KIAS
- 8. Landing lights: OFF

AFMS N°D03 FOR ALTERNATIVE AVIONICS CONFIGURATION

K TECNAM P2010 - Aircraft Flight Manual

Page 4G-24

5.11 BEFORE LANDING

- 1. Electric fuel pump: ON
- 2. Fuel valve: *select the fullest tank*
- 3. Landing Light: ON

On downwind, leg abeam touch down point:

4. Flaps: set T/O (below 90KIAS)

Expect to adjust pitch trim (pitch down) when extending flaps to T/O or LAND

5. Approach speed: set

On final leg, before landing:

- 6. Mixture control lever: RICH
- 7. Flaps: LAND
- 8. Final Approach Speed: set
- 9. Optimal touchdown speed: 60 KIAS

In conditions such as (e.g.) strong wind, danger of windshear or turbulence a higher approach speed shall be selected.

CAUTION

5.12 BALKED LANDING/MISSED APPROACH

- 1. Throttle: FULL
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*
- Above a safe height:
 - 4. Landing lights: OFF

5.13 GO-AROUND

- 1. Throttle: FULL
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*

5.14 AFTER LANDING

- 1. Throttle: Idle
- 2. Brakes: apply
- 3. Pitot heat: OFF (if ON)
- 4. Flaps: UP
- 5. Electric Fuel Pump: OFF
- 6. XPDR: OFF
- 7. Landing light: OFF
- 8. Taxi Light: ON

Supplement D03: pages replacement instructions

SECTION 5 – PERFORMANCE

Make sure you first applied instructions reported on the basic AFM, Section 5 Performance

According to A/C configuration refer to the basic AFM, Section 5 – Performance

Supplement D03: pages replacement instructions

SECTION 6 - WEIGHT AND BALANCE

Make sure you first applied instructions reported on the basic AFM, Section 6 Weight and Balance

According A/C configuration apply following pages replacement:

Supplement D03 – WEIGHT AND BALANCE page		AFM Section 6 page
6G-11	REPLACES	Page 6-11 of basic AFM, Section 6
6G-12	REPLACES	Page 6-12 of basic AFM, Section 6

5. EQUIPMENT LIST

The following is a list of equipment which may be installed in the *P2010*.

The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

AFMS N°D03 FOR ALTERNATIVE AVIONICS CONFIGURATION

P2010 - Aircraft Flight Manual

Page 6G-12

	EQUIPMENT LIST	AIRCRAFT S/N	DATE:		
Ref.	DESCRIPTION	P/N	INST	Weight [<i>kg]</i>	ARM [M]
Instrum	ENTATION				
A1	GARMIN G500				
A2	MD 302 MID Continent	6420302-1		0.73	-0.69
A3	GDU 620 (PFD/MFD)	011-01264-50		2.90	-0.69
A4	GTN 650 (Com/Nav/Gps)	011-02256-00		2.48	-0.69
A5	GNC 255A (Com/Nav)	011-02719-00		1.37	-0.69
A6	GMA 340 (Audio Panel)	011-00401-10		0.60	-0.69
A7	DME Indicator - KDI 572	066-01069-0000		0.36	-0.69
A8	ADF system - KR 87	006-00184-XXX		1.47	-0.69
A9	JP Instruments EDM 930	790000-c-[XXX]		1.36	-0.69
A10	Remote Alarm Display (RAD)	790749		0.1	0.69
A11	Compass	C2400L4P		0.4	-0.69
A12	Pitch trim indicator – UMA instruments	N0911S0U2DR00W		0.1	-0.69
A13	Rudder trim indicator	N0911R0L2R000W		0.1	-0.69
A14	Digital Clock - Davtron	M800-28V-BAT		0.1	-0.69
AVIONI	CS & MISCELLANEOUS	-	-		
B1	ELT-ACK	E-04		0.73	1.61
B2	Front seats GEVEN	E5-01-007-T01 (LH) E5-01-008-T01 (RH)		20 (10x2)	0.50
B3	Rear seats GEVEN	E5-01-007-T01 (LH) E5-01-008-T01 (RH)		20 (10x2)	1.26
B4	Fire extinguisher	13-07655		0.8	-0.18
В5	First aid kit	FIA270160		0.2	0.5
B6	Torch			1	-0.18
B7	Battery GILL247- 24V -19Ah	G247		19.3	3.05
B8	Fuel qty sender – Electronics international	P-300C		0.15	0.5
В9	DME Transceiver - KN63	066-01070-0001		2	3.05
LIGHTS	:				
B10	Nav/POS/Strobe Light SH wing - Ultraga- lactica Aveo	AVE-WPST R/G-54G		1	0.23
B11	Rudder Nav Light – PosiStrobe CT	AVE-POSW-62G		1	5.5
B12	Landing/Taxy Light - WHELEN Mod 7167400	01-0771674-00		2	-1.52
PITOT S	STATIC:				
B13	Pitot (Heated) - Falcon Gauge	24-AN5812-1		3	0.5
Landing	GEAR ACCESSORIES		-		
C1	Nose Landing Gear Wheel Fairing	210-4-3001-401		1.2	-1.48
C2	Main Landing Gear WheelFairings	210-4-1020-001-L/R		3 (1.5x2)	0.66

Supplement D03: pages replacement instructions

SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

Make sure you first applied instructions reported on the basic AFM, Section 7 Airframe and Systems Description

Supplement D03 – AIRFRAME AND SYSTEMS page		AFM Section 7 page
7G-8	REPLACES	Page 7-8 of basic AFM, Section 7
7G-9	REPLACES	Page 7-9 of basic AFM, Section 7
7G-20	REPLACES	Page 7-20 of basic AFM, Section 7
7G-21	REPLACES	Page 7-21 of basic AFM, Section 7
7G-22	REPLACES	Page 7-22 of basic AFM, Section 7
7G-23	REPLACES	Page 7-23 of basic AFM, Section 7
7G-24	REPLACES	Page 7-24 of basic AFM, Section 7
7G-27	REPLACES	Page 7-27 of basic AFM, Section 7

According A/C configuration apply following pages replacement:

3. FLIGHT CONTROLS

Aircraft flight controls are operated through conventional stick and rudder pedals. Longitudinal control acts through a system of push-rods and is equipped with a trim tab. a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially. Aileron trimming is carried out on ground through a small tab positioned on left aileron.

Flaps are extended via an electric servo actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the indicator displays three markings related to 0° , takeoff (T/O) and landing (FULL) positions. A breaker positioned on the right side of the instrument panel protects the electric circuit.

The control of the stabilator trim is operated by means of a control wheel, located between the two front seats that acts directly on the control cables.

Stabilator trim position is displayed on a dedicated analogue indicator located on the LH area of the instrument panel.

Rudder Trimming device for lateral control is provided by means of an electrical actuator controlled by a rocker switch located near the pitch trim wheel; the surface is connected to a potentiometer linked to a rudder trim analogue indicator located on the LH area of the instrument panel. COSTUZIONA AERONAUTICHE P2010 - Aircraft Flight Manual

4. INSTRUMENT PANEL

The instrument panel installed on P2010, when equipped with G500 suite, is presented below:

- N° 1 Garmin GDU 620 (PFD/MFD), (5);
- N° 1 Garmin GTN 650 (Com/Nav/Gps), (9);
- N° 1 Garmin GNC 255A (Com/Nav), (10);
- N° 1 Garmin GMA 340 (Audio Panel), (8);
- N° 1 Bendix/King KN 572 (DME unit), (14);
- N° 1 Bendix/King KR87 (ADF unit), (11);
- N° 1 JP Instruments EDM 930 (EIS unit), (13);
- N° 1 JP Instruments EDM 930 Remote Alarm Display, (12);
- N° 1 Mid-Continent MD-302 (Stand-by Instrument), (6);
- N° 1 Annunciator panel, (7);
- N° 1 Pitch trim indicator, (3);
- N° 1 Rudder trim indicator, (4);
- N° 1 Chronometer (2);

Fig. 7-8. INSTRUMENT PANEL

1st Edition Rev. 1

Section 7 – Airframe and Systems description

INSTRUMENTAL PANEL

COSTRUZION A REPORT P2010 - Aircraft Flight Manual Page 7G-20

5. ELECTRICAL SYSTEM

Primary DC power is provided by an external alternator with a 28 VDC output, rated of 70 Amps @ 2700 rpm. During normal operations, it recharges the battery.

Secondary DC power is provided by a lead type battery (GILL G-247) which provides the energy necessary for feeding the essential electrical loads in the event of an alternator failure.

The switch between the energy sources is automatic and no action is required in order to activate the alternate energy source.

For ground maintenance and/or starting, an external power socket is provided.

The alternator and battery are connected to the battery bus in order to provide energy for the electric equipment.

Each electrically fed instrument is connected to a dedicated circuit breaker which protects the cable from the battery bus to the associated electric equipment.

If the Ignition is in the position L, R, or BOTH, an accidental movement of the propeller may start the engine with possible danger for bystanders.

In the following figure is presented the electrical system architecture.

AFMS N°D03 FOR ALTERNATIVE AVIONICS CONFIGURATION

EXTECNAM P2010 - Aircraft Flight Manual

Page 7G-21

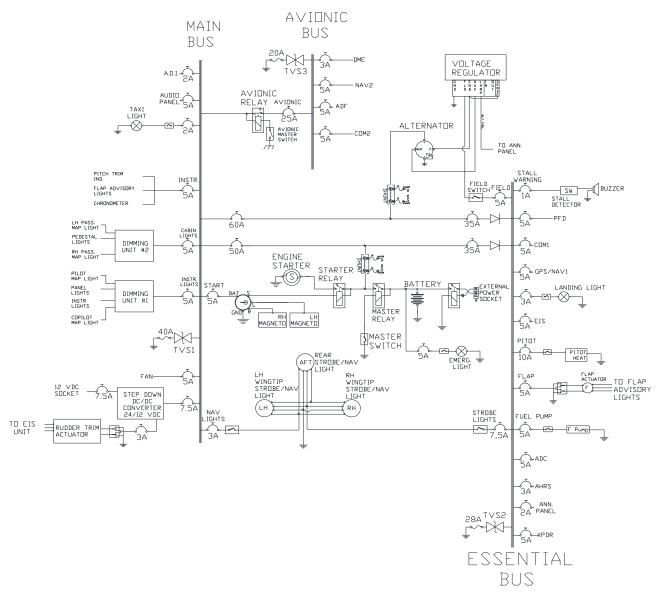


FIG.7-15. ELECTRICAL SYSTEM ARCHITECTURE

9.1 STALL WARNING SYSTEM

The aircraft is equipped with a stall warning system consisting of a sensor located on the right wing leading edge connected to a warning horn located near the instrument panel.

COSTRUZIONI AERONANTICHE P2010 - Aircraft Flight Manual Page 7G-22

9.2 Avionics

P2010 avionic system, in this equipment configuration, is mainly based on avionics package Garmin G500.

The G500 suite installed on P2010 is based on a single display layout. It provides the pilot with all primary flight information and is able to act as a navigation indicator for external navigation sources such as VHF NAV and GPS. G500 also presents moving map information to the pilot.

Engine parameters are presented on an external instrument, EDM-930, equipped with an additional Remote Alarm Display which is intended to provide RPM and MAP information in the event of primary display failure.

An external annunciator panel is located in the top center area of the instrument panel.

In order to provide the pilot with main flight information in the event of PFD failure, or in the event of an AHRS and ADC units combined failure, an integrated digital stand-by instrument, Mid-Continent MD-302, featuring airspeed, altitude, attitude and slip information is installed.

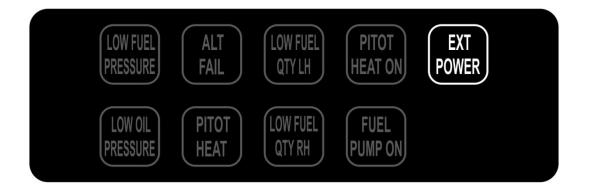
An ELT device is installed and its control switch is located in the upper left area of the cockpit.

The Com/Nav functions are embodied into two devices, GNC 255 and GTN 650. The second one provides also GPS signal.

A dedicated DME and an dedicated ADF receivers are installed, and also a Trasponder unit.

Two dedicated analogue indicators are provided for pitch and rudder trim positions.

The installed equipment is such that the aircraft is able to fly under day/night VFR and day/night IFR rules and to perform ILS CAT I approaches with ILS.



Standby MD302 has a better availability and integrity than Garmin G500 (at least for the critical parameters) against the HIRF/IEL threats. In case of inconsistency between Garmin PFD and MD-302SAM flight informations, it may be expected MD-302SAM to be more reliable, but cross-check with other flight parameters will be necessary to address the faulty source of information.

9.3 EXTERNAL POWER SUPPLY

On the right side of the tail cone, an external power is present. Using this device it is possible to feed the electric system directly on the main bus bar, by an external power source. It should be used at the engine start-up in cold weather condition.

A white advisory "EXT. POWER" label will appear on annunciator panel upon connection of external power in order to advise pilot; the label will disappear upon disconnection of ground external power.

Exercise caution while applying external power.

Exercise extreme caution while disconnecting external power with engine running due to airflow coming from the propeller. Approach the power supply receptacle from rear of the wing. Make a positive check, upon disconnection, that:

- the power chord is free from any aircraft structure
- the receptacle is firmly closed.

Follow this procedure to start the engine using the external power source.

- 1. Ignition key, Master switch, Generator switch: OFF
- 2. Open the receptacle door and insert the external power source"s plug into the socket
- 3. Engine start-up procedure (see Sect. 4 in this manual)
- 4. Disconnect the external power source"s plug and close firmly the receptacle door.

AFMS N°D03 FOR ALTERNATIVE AVIONICS CONFIGURATION

COSTRUZIONARE P2010 - Aircraft Flight Manual Page 7G-24

10. PITOT-STATIC PRESSURE SYSTEMS

The P2010 air speed/altitude indicating systems are connected with a Pitot-Static system based on a total pressure/Pitot probe (simple Pitot tube, heated for icing protection) mounted on left wing strut and two static pressure ports connected in parallel and located in correspondence of engine firewall on left and right side of fuselage. Flexible hoses connects total pressure and static ports to primary analogue instruments, anemometer and altimeter.

Garmin G500 suite and standby MD 302 unit are connected to both static and total pressure lines providing both air speed and altitude information.

FIG.7-16. PITOT-STATIC SYSTEM

Ed. 1Rev 0

Section 7 – Airframe and Systems description

PITOT-STATIC PRESSURE SYSTEMS

11.2 INTERNAL LIGHTS

On the cabin ceiling are located four map lights, two in the front area (pilot) and two in the rear area (passengers).

In the central area of the cabin ceiling is located a spot light used to illuminate the pedestal during night flight operations. All ceiling lights are dimmable by a dedicated dimmer.

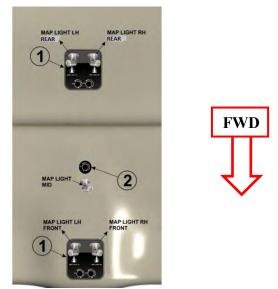


FIG.7-18. CABIN CEILING LIGHTS LAYOUT

The instrument panel can be illuminated by 8 incandescence light strips, all dimmable.

Ed. 1Rev 0

FIG.7-19. INSTRUMENT PANEL LIGHTS LAYOUT

Section 7 – Airframe and Systems description

LIGHTS

Supplement D03: pages replacement instructions

SECTION 8 – GROUND HANDLING & SERVICE

Make sure you first applied instructions reported on the basic AFM, Section 8 Ground Handling & Service

Refer to the basic AFM, Section 8 - Ground Handling & Service

INTENTIONALLY LEFT BLANK

Section 9 - Supplements Supplement no. D03 - ALTERNATIVE AVIONICS CONFIGURATION

SUPPLEMENT NO. D5

ARGENTINE AIRCRAFT FLIGHT MANUAL SUPPLEMENT

Record of Revisions

Rev	Revised page	Description of Revision	Tecn	am Appro	EASA Approval or Under DOA	
			DO	OoA	HDO	Privileges
0	-		D. Ronca	M.Oliva	M. Oliva	DOA

List of Effective Pages

Page	Revision	Page	Revision
D5-1	Rev 0		
D5-2	Rev 0		
D5-3	Rev 0		
D5-4	Rev 0		
D5-5	Rev 0		
D5-6	Rev 0		
D5-7	Rev 0		

1st Edition, Rev. 0

Supplement no. D5 – Argentine AFM supplement

INDEX

INTRODUCTION	3
LIMITATION	
Limitation placards	3
Other placards	4

Supplement no. D5 – Argentine AFM supplement

INTRODUCTION

This supplement contains supplementary information for a safe and efficient operation of the aircraft delivered in the Argentina

For limitations, procedures, and performance information not contained in this supplement, refer to the EASA Approved Aircraft Flight Manual.

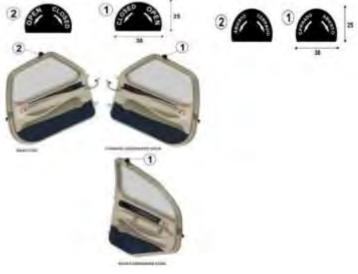
LIMITATION

The information contained herein complements or supersedes the basic information in the EASA Approved Aircraft Flight Manual.

LIMITATION PLACARDS

On the right side of the instrument panel the following placard is placed reminding the observance for "NO FUMAR":

Behind the baggage compartment door the following placard is placed:

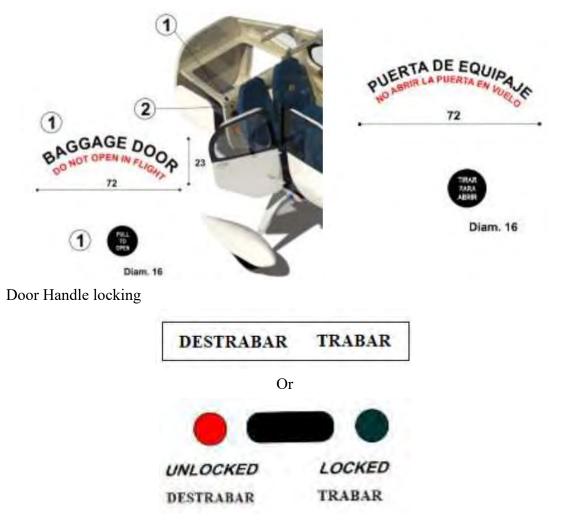


1st Edition, Rev. 0

OTHER PLACARDS

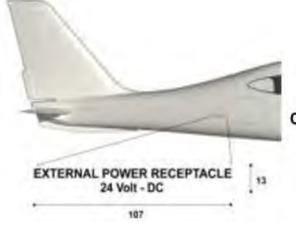
Door Placard

Supplements no. D5


1st Edition, Rev. 0

Supplement no. D5 – Argentine AFM supplement

Emergency Exit internal placard


Open baggage placard

1st Edition, Rev. 0

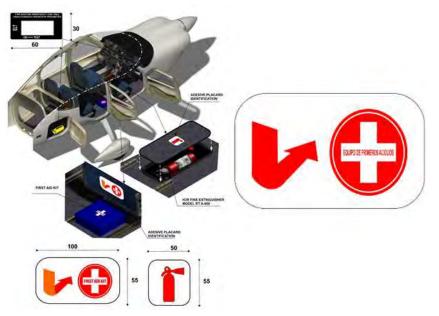
Supplement no. D5 – Argentine AFM supplement

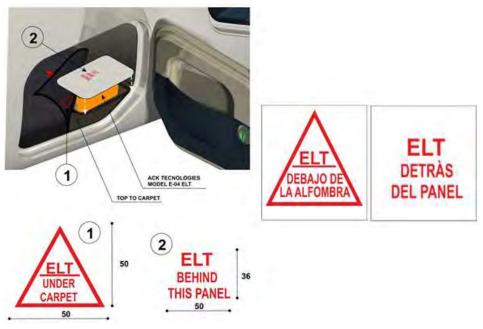
External Power Socket and baggage compartment placards

CONEXION ENERGIA EXTERNA 24 Vol - DC

Static source placards

No Step placard


Fuel Limitation placard


Supplements no. D5 Supplement no. D5 – Argentine AFM supplement

1st Edition, Rev. 0

Safety equipment location placard

ELT placard

Supplements no. D5

1st Edition, Rev. 0

Supplement no. D5 – Argentine AFM supplement

Supplement no. D07

AFMS FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES

Record of Revisions

Rev	Revised page	Description of Revision	Тес	enam Appro	EASA Approval or Under DOA	
			DO	OoA	HDO	Privileges
0	-	First Issue	D. Ronca	C. Caruso	M. Oliva	

List of Effective Pages

	Page	Revision
Cover Pages	D07-1 thru 21	<i>Rev.</i> 0
Section 1	APV 1-6, APV 1-13, APV 1-16 thru 31	<i>Rev.</i> 0
Section 2	APV 2-7, APV 2-9 thru 10, APV 2-15, APV 2-17 thru 20	<i>Rev.</i> 0
Section 3	APV 3-14, APV 3-18 thru 19, APV 3-31 thru 35	<i>Rev.</i> 0
Section 4	APV 4-7, APV 4-15, APV 4-19 thru 26, APV 4-27 thru 38	<i>Rev.</i> 0
Section 5	APV 5-1 thru 16	<i>Rev.</i> 0
Section 6	APV 6-11 thru 12	<i>Rev.</i> 0
Section 7	APV 7-8 thru 11, APV 7-16, APV 7-20 thru 21, APV 7-27, APV 7-33, APV 7-36	<i>Rev.</i> 0

INDEX

INDEX	2
INTRODUCTION	3
Section 1 - GENERAL	5
Section 2 - LIMITATIONS	7
Section 3 - EMERGENCY PROCEDURES	9
Section 4 - NORMAL PROCEDURES	11
Section 5 - PERFORMANCE	13
Section 6 - WEIGHT AND BALANCE	15
Section 7 - AIRFRAME AND SYSTEMS DESCRIPTION	17
Section 8 - GROUND HANDLING & SERVICE	19

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin GFC 700 autopilot device interfacing Garmin G1000 and MT variable pitch propeller.

It is the owner's responsibility to replace the mentioned pages in accordance with the instructions herein addressed section by section.

INTENTIONALLY LEFT BLANK

Supplement D07: pages replacement instructions

SECTION 1 – GENERAL

Make sure you first applied instructions reported on the basic AFM, Section 1 General

According to A/C configuration apply following pages replacement:

Supplement D07 GENERAL page		AFM Section 1 page
APV 1-6	REPLACES	1-6 of basic AFM, Section 1
APV 1-13	REPLACES	1-13 of basic AFM, Section 1
APV 1-16 thru 31	REPLACES	1-16 thru 31 of basic AFM, Section 1

INTENTIONALLY LEFT BLANK

P2010 - Aircraft Flight Manual Page APV 1-6

5. ENGINE

COSTRUZIONI AERONAUTICHE

Manufacturer	Lycoming Engines
Model	IO-360-M1A
Type Certificate	EASA TCDS no. IM.E.032
Engine type	Fuel injected (IO), direct drive, four cylinder horizontally opposed, air cooled with down exhaust outlets.
Maximum power	134.0 kW (180hp) @ 2700 rpm
Maximum continuous power	129.2 kW (173.3hp) @ 2600 rpm

6. **PROPELLER**

er
/193-52
OS no. P.098
osite 2-blades – aluminum hub
76 in) (no reduction is permitted)
ch
/193-52 OS no. P.098 posite 2-blades – aluminum hub 76 in) (no reduction is permitted)

Governor

Manufacturer	MT Propeller
Model	P-860-23:
Туре	Hydraulic

COSTRUCTON AFROMAUTCHE P2010 - Alreraft Flight Manual Page APV 1-13

Autopilot acronyms

AC	Advisory Circular	GNSS	Global Navigation Satellite System
A/C	Aircraft	GP	Glide Path
ADC	Air Data Computer	GPS	Global Position System
ADF	Automatic Direction Finder	GS	Glide Slope
ADI	Attitude Directional Indicator	GSA	Garmin Servo Actuator
AFCS	Automatic Flight Control Systyem	GSM	Garmin Servo Mount
AHRS	Attitude Heading Reference System	HDG	Heading
ALT	Altitude	HSDB	High Speed Data Bus
ALTS	Altitude Selector	IAU	Integrated Avionic Unit
AMPS	Ampere	LOC	Localizer
A/P	Autopilot	LRU	Line Repleaceable Unit
APR	Approach	LVL	Level
ARP	Aerospace Recommended Practice	MAG	Magnetometer
ASI	Air Speed Indicator	MET	Manual Electric Trim
ВС	Back Course	MFD	Multi-Function Display
CAS	Caution Advisory System	NAV	Navigation
CDI	Course Deviation Indicator	OAT	Outside Air Temperature
CS	Certification Specifications	PFD	Primary Flight Display
CWS	Control Wheel steering	PFI	Primary Flight Information
DC	Direct Current	PFT	Pre Flight Test
DME	Distance Measuring Equipment	PWM	Pulse Width Modulation
EIS	Engine Indication System	SAE	SAE International
ESP	Electronic Stability and Protection	TDM	Time Division Multiplexing
FD	Flight Director	USP	Under Speed Protection
FLC	Flight Level Change	VHF	Very-High Frequency
GA	Go Around	VNV	Vertical Navigation
GDU	Garmin Display Unit	VS	Vertical Speed
GIA	Garmin Integrated Avionics	XPDR	Transponder

ECNAM P2010 - Aircraft Flight Manual Page APV 1-16

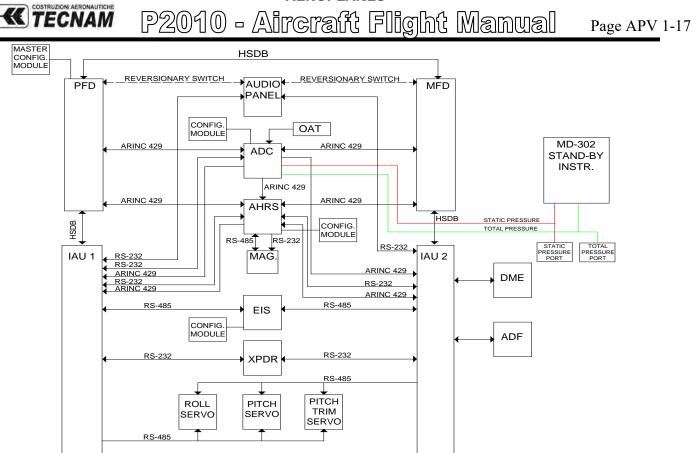
12 AUTOPILOT DESCRIPTION

P2010 aircraft is equipped, as an optional equipment, with an integrated 2-axis autopilot suite manufactured by Garmin and identified as GFC 700. This autopilot suite was designed as an option for the G1000 integrated flight deck. The autopilot is controlled via dedicated keys grouped in a control panel located on the MFD. The installed MFD display is different with respect to standard P2010 configuration since it is GDU 1044.

The autopilot suite installed on P2010 is based on the following configuration:

- 1 Roll servo
- 1 Pitch servo
- 1 Pitch Trim servo

Neither yaw axis nor rudder trim tab control is provided.


The autopilot is connected to electric system through the below listed circuit breakers connected to the avionics bus:

- 1) A/P (5A)
- 2) PITCH TRIM (3A)

The installed servos are capstan type and are composed of two main components:

- A servo motor
- A servo capstan including the servo clutch

The following block diagram describes the avionic system installed on P2010 and its interconnections with the autopilot servos:

The multifunction display (MFD) provides the pilot with a dedicated set of keys for autopilot control (see red frame in the below picture).

The roll servo is located under the pilot seat and is fixed to a/c structure using a dedicated mount. Pitch and pitch trim servos are located in the tail cone and are installed on a dedicated mount which hosts both the servos.

1st Edition, Rev. 0

Section 1 – General AUTOPILOT DESCRIPTION

COSTRUZIONI ARRONAUTICHE P2010 - AIRCRAft Flight Manual Page APV 1-18

GFC 700 is an integrated autopilot since it uses several information provided by other units embodied in the G1000 avionics suite in order to compute the maneuvers to be performed by the aeroplane and actuate them. The below table lists the functions which are required in order to have the GFC 700 operational and the G1000 LRUs responsible for providing it:

LRU Function		ADC (GDC		MAG. (GMU		ACTUA- TOR	CAP- STAN
	· ,	74X)			63W)		(GSM 8X)
AFCS mode select buttons	~						
Display of the AFCS mode annuncia- tions and flight director command bars.	✓ (PFD NORMAL) (MFD REVER- SIONARY)						
Attitude/Heading information	Slottiner)		✓	✓			
Air data information		✓					
Navigational database Parameters	✓						
GPS/WAAS, VOR, and ILS naviga- tional data					~		
Mode logic, flight director computa- tions, and servo management					~		
Autopilot computations and monitor- ing						~	
Aircraft control surface Actuation							~
Trim functionality						✓	

In control of the roll axis, the autopilot senses turn rate, as well as closure rate to the selected course, along with the non-rate quantities of heading error, course error and course deviation indication.

In control of the pitch axis, the autopilot senses vertical speed, acceleration, and closure rate to the selected glideslope, along with the non-rate quantities of altitude and glideslope deviation indication.

The "autotrim" function senses when the aircraft needs to be trimmed about the pitch axis, and responds by driving the trim servo in the proper direction to provide trim.

12.1 GDU 1044 (MFD)

GDU 1044 MFD unit can display as default engine parameters and moving map information, along with other information that can be selected by the pilot (see the first figure below); when reversionary mode is active it will display flight parameters (in the form of PFD with the left strip engine information, as can be seen in the second figure below). It is the user interface for P2010 avionics suite. GDU 1044 unit replaces the GDU 1040 unit on instrument panel RH side (MFD).

GDU 1044 (MFD)

Reversionary mode:

- In the event of a single display failure the system is able to automatically switch the critical information including flight and engine parameters on the remaining display presenting them in a compact view. In the event of a failure of the automatic switch logic, the pilot can easily force the reversionary mode by pressing the red button on the bottom of the audio panel thus getting both flight and engine parameters information, necessary for continued safe flight, on the remaining display.

GDU 1044 (MFD) in reversionary mode

1st Edition, Rev. 0

Section 1 – General AUTOPILOT DESCRIPTION

COSTRUZIONA ARGUMANTICHE P2010 - Aircraft Flight Manual Page APV 1-20

Autopilot control panel

The GDU1044 includes a set of additional softkeys dedicated to the control of Autopilot system.

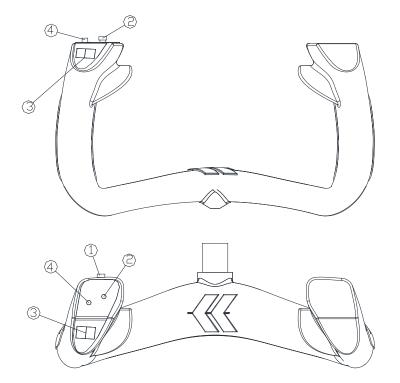
The following dedicated AFCS keys are located on the bezel of the MFD (refer picture below):

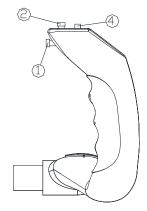
- 1) AP Key: Engages/ disengages the autopilot
- 2) FD Key: Activates/deactivates the flight director only
- 3) NAV Key: Selects/deselects Navigation Mode
- 4) ALT Key: Selects/deselects Altitude Hold Mode
- 5) VS Key: Selects/deselects Vertical Speed Mode
- 6) FLC Key: Selects/deselects Flight Level Change Mode
- 7) HDG Key: Selects/deselects Heading Select Mode
- 8) APR Key: Selects/deselects Approach Mode
- 9) VNV Key: Selects/deselects Vertical Path Tracking Mode for Vertical Navigation flight control
- 10) NOSE UP/ NOSE DN Keys: Control the mode reference in Pitch Hold, Vertical Speed and Flight Level Change modes

Autopilot control panel

EXTECNAM P2010 - Aircraft Flight Manual Page APV 1-21

12.2 PILOT CONTROL WHEEL AND THROTTLE BUTTONS


On the left side of pilot's and copilot's control wheels there are two PTT switches (the one on pilot control wheel is shown below as (1)) that, when pushed, allow radio transmission. These switches are momentaneous ones thus acting in such a way that when they are released the active COM device returns to the non-transmitting state. These switches are already installed in the basic aircraft which is not equipped with the autopilot.


The following additional dedicated AFCS controls are located on the pilot control wheel, separately from the MFD, and on the throttle handle:

- AP DISC Switch: Disengages the autopilot and interrupts pitch trim operation This switch may be used to mute the aural autopilot disconnect alert.
- **AP Trim Switch:** Used to command manual electric trim. This composite switch is split into left and right sides. The left switch is the ARM contact and the right switch controls the DN (forward) and UP (rearward) contacts. The AP TRIM ARM switch can be used to disengage the autopilot and to acknowledge an autopilot disconnect alert and mute the associated aural tone. Manual trim commands are generated only when both sides of the switch is active separately for more than three seconds, MET function is disabled and 'PTRM' is displayed as the AFCS Status Annunciation on the PFD. The function remains disabled until both sides of the switch are inactivated.
- **CWS Button:** While pressed, the Control Wheel Steering allows manual control of the aircraft while the autopilot is engaged and synchronizes the flight director's Command Bars with the current aircraft pitch (if not in Glideslope Mode) and roll (if in Roll Hold Mode). Upon release of the CWS Button, the flight director may establish new reference points, depending on the current pitch and roll modes. CWS operation details are discussed in the flight director modes section.
- **TO/GA Switch:** The GA Switch is located on the throttle handle. Go Around and Takeoff modes are coupled pitch and roll modes and are annunciated as both the vertical and lateral modes when active. In these modes, the flight director commands a constant set pitch attitude and keeps the wings level. The GA Switch is used to select both modes. The mode entered by the flight director depends on whether the aircraft is on the ground.

P2010 - Aircraft Flight Manual Page APV 1-22

The above mentioned AFCS controls are depicted in the below figures.

where:

- 1) PTT switch
- 2) AP DISC Switch
- 3) AP Trim Switch
- 4) CWS Button

COSTRUZIONI AEROMANUTCHE P2010 - Aircraft Flight Manual Page APV 1-23

P2010 - Aircraft Flight Manual Page APV 1-24

13 AUTOPILOT FUNCTIONS AND FEATURES

GFC 700 autopilot suite is deeply integrated with Garmin G1000 avionics suite which integrates both the a/p controls and the sensors providing the required data to the servos.

The GFC 700 AFCS is equipped with the following main operating functions:

- Flight Director (FD) Flight director commands are displayed on the PFD. The flight director provides:
 - ✓ Command Bars showing pitch/roll guidance
 - ✓ Pitch/roll mode selection and processing
 - ✓ Autopilot communication
- Autopilot (AP) Autopilot operation occurs within the pitch, roll, and pitch trim servo and provides servo monitoring and automatic flight control in response to flight director steering commands, AHRS attitude and rate information, and airspeed.
- Manual Electric Trim (MET) The pitch trim servo provides manual electric trim capability when the autopilot is not engaged.
- **ESP** (Electronic Stability & Protection) keeps the aircraft within well defined operational limits thus preventing the pilot to operate the aircraft outside a specific envelope when it is being hand flown. This feature only operates when autopilot is not engaged and its operation is mutually exclusive with autopilot operation.
- **USP** (Underspeed Protection) is a flight director function that reacts to underspeed conditions in a way that allows the autopilot to remain engaged but prevents the airplane from stalling.

13.1 ESP

Garmin GFC 700 is equipped with an envelope protection feature referred as ESP (Electronic Stability & Protection). Electronic Stability and Protection continuously monitors the aircraft. The system works by applying a correcting force to the controls in order to nudge pilot to avoid extreme attitudes that may bring the aircraft, if not corrected, to exceed normal flying envelope.

This software feature aims to provide protection against aircraft operation outside a desired flight envelope. ESP will maintain the desired operating envelope, defined at autopilot development time, by automatically engaging one or more servos when the aircraft is near the operating limit and nudging pilot to come back to nominal operating envelope. While ESP utilizes the same sensors, processors, and actuators as the GFC 700 autopilot, it is basically a separate function. ESP can be overpowered by the pilot and can be temporarily disabled using the AP disconnect or CWS switches. It functions independently of the aircraft's autopilot system (although it uses the same control servos), so it basically operates "in background" whenever the pilot is hand-flying the airplane.

The ESP feature will only function with GPS available, A/P MASTER SWITCH ON (but autopilot not engaged) and aircraft above 200ft AGL.

ESP enabling:

As a standard, ESP will automatically set to enable at power-up.

The system is configured in order to allow the pilot to disable ESP (or re-enable it if previously disabled after power up) via the AUX – SYSTEM SETTINGS page on MFD.

If ESP has been disabled via MFD, it will automatically be set to ON upon any battery/power reset.

ESP function uses the same servos that provide autopilot functionality while autopilot is not engaged, as such, if power is cut from these servos both autopilot and ESP functions will be unavailable.

Based on the above if "AUTOPILOT MASTER" is set to OFF, power to servos is cut irrespectively of their mode of operation (autopilot or ESP).

The pilot can interrupt ESP by pressing and holding either the Control Wheel Steering (CWS) or Autopilot Disconnect (AP DISC TRIM INTRPT) switch. Upon releasing the CWS or AP DISC TRIM INTRPT switch, ESP force will again be applied, provided aircraft attitude and/or airspeed are within their respective engagement limits.

ESP can be enabled or disabled on the AUX-SYSTEM SETUP 2 Page on the MFD.

AEROPLANES

P2010 - Aircraft Flight Manual Page APV 1-26

To enable or disable ESP:

K TECNAM

- 1) Turn the large FMS Knob to select the AUX Page Group.
- 2) Turn the small FMS Knob to select the System Setup Page.
- 3) If necessary, select the SETUP 2 Softkey to display the AUX-SYSTEM SETUP 2 Page.If the AUX-SYSTEM SETUP 2 is already displayed, proceed to step 4.
- 4) Press the FMS Knob to activate the cursor.
- 5) Turn the large FMS Knob to place cursor in the STABILITY & PRO-TECTION field.
- 6) Turn the small FMS Knob to select 'ENABLE' or 'DISABLE'.
- 7) Press the FMS Knob to remove the cursor.

ESP engagement and operation:

ESP is automatically enabled on system power up.

ESP unavailability and/or failure is indicated to the pilot on PFD by the advisory "ESP not available" on alert window.

ESP will turn OFF upon loss of both GPS. The ADVSY "ESP OFF" will appear on the alert window in case of loss of both GPS.

13.1.1 PITCH MODE

Pitch attitude boundaries are set based on P2010 aircraft performances. Since pitch ESP augments the natural aircraft longitudinal stability, no special simbology is required.

Value that have been set-up for the P2010 are as follows:

Nose above the horizon:

Engagement low threshold: $+15^{\circ}$ Engagement upper threshold: $+18^{\circ}$ Lower disengage threshold: $+12^{\circ}$

Nose below the horizon:

Engagement low threshold: -15° Engagement upper threshold: -20° Lower disengage threshold: -13°

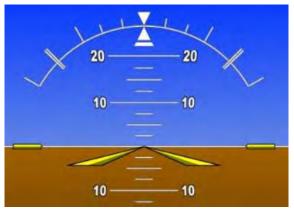
ESP utilizes electronic torque and speed commands to augment the aircraft's stability: it uses an Electronic Torque Limit (ETL) and an Electronic Speed Limit (ESL) to limit the maximum authority of the ESP function. ESP is inactive when the pitch attitude is within the positive and negative engagement limits defined in the certification gain file.

P2010 - Aircraft Flight Manual Page APV 1-27

When the aircraft reaches the engagement limit, ESP ramps up the servo torque command to adjust the aircraft back toward zero pitch attitude. ESP uses a rate command to drive the attitude back to the nominal range and does not try to control to a specific attitude. As the pitch attitude returns to the nominal range, the torque and pitch rate are reduced until the aircraft reaches the disengagement limit at which time ESP turns off. The disengagement threshold is sized so that the transition from ESP being active to being inactive is transparent to the pilot (no transient when ESP turns off).

If, when ESP engages, the aircraft continues to pitch away from the nominal attitude range the torque command will increase with increasing pitch deviation. Above the upper disengagement limit specified in the certification gain file ESP will be disabled.

13.1.2 ROLL MODE

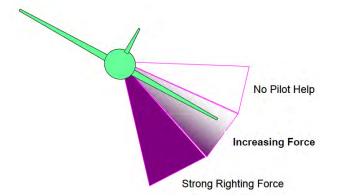

Roll mode is similar to pitch mode and also utilizes configurable gain file parameters to define engagement and disengagement limits as well as the speed and torque curves.

The engagement and disengagement attitude limits are displayed with double hash marks on the roll indicator when ESP is available and /or active. The lack of double hash marks above 200 ft AGL (when autopilot is not connected) is a clear indication that ESP is not available.

Values for the symmetric roll attitude limits are as follows:

Engagement low threshold: $+/-45^{\circ}$ Engagement upper threshold: $+/-75^{\circ}$ Lower disengage threshold: $+/-30^{\circ}$

Electronic stability and protection action starts at the predetermined bank angle. Since crossing this bank angle results in a change in aircraft stability (and therefore handling characteristics) indications of this boundary are provided to the pilot.



When ESP is inactive (roll attitude within nominal limits) only the engagement limits are displayed in order to reduce clutter on the roll indicator. As the bank

1st Edition, Rev. 0

P2010 - Aircraft Flight Manual Page APV 1-28

angle is increased, a region of an increasing force as a function of bank angle is entered. The envelope protection system adds bank stability in this region. As the bank angle is increased further, a constant force is applied to right the airplane. See the below figure for an example of the ESP engagement limits.

VMO

K TECNAM

Exceeding VMO will result in ESP applying force to raise the nose; when the high speed condition is remedied, ESP force is no longer applied.

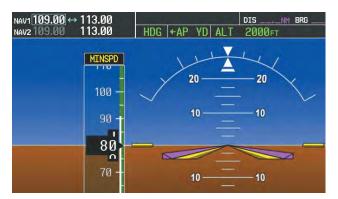
Engage Limit: 165 KIAS Upper Limit: 168 KIAS Lower disengage Limit: 160 KIAS

13.2 USP

Underspeed Protection (USP) is a flight director function that reacts to underspeed conditions, designed to discourage aircraft operation below minimum established airspeeds.

Pilot will be warned of impending low speed conditions, and if no action will be taken FD will directly react in a way that allows the A/P to remain engaged but prevents the airplane from stalling.

USP function has been developed in order to warn pilot of impending low speed conditions, and if no action will be taken FD will directly react in a way that allows the Autopilot to remain engaged but prevents the airplane from stalling.


Pilot action is still expected at first warning of low airspeed conditions in order to prevent a low speed conditions, so to maintain normal flight.

When autopilot is engaged USP will provide the pilot with aural/visual cues to make him aware of an impending stall and will drive the servos in order to prevent stall.

When autopilot is not engaged and only Flight director is active, USP will provide the pilot with aural/visual cues to make him aware of an impending stall but servos will not be driven.

P2010 - Aircraft Flight Manual Page APV 1-29

How Underspeed Protection functions depends on which vertical flight director mode is selected.

For the purpose of this discussion, the vertical flight director modes can be divided into two categories:

- It is important to maintain altitude for as long as possible (altitudecritical modes).
- Maintaining altitude is less crucial (non-altitude critical modes).

If USP engages while Autopilot is in PIT or VS mode, and power is abruptly set to full throttle, pilot may expect a slight nose up tendency that will be quickly counteracted by autopilot. This is a normal behaviour, the slight nose up tendency in this case will be due to abrupt power advance, but will be immediately damped by Autopilot (with PIT or VS turning green on the annunciation panel).

USP engagement is a consequence of autopilot failing to properly monitoring A/P and aircraft behaviour. This is mainly caused by a pilot request that cannot be fulfilled due to lack of power coupled with unattainable pitch input.

Pilot need to continuously monitor autopilot performance, while checking that mode selections are compatible with aircraft performance.

If Autopilot is engaged in FLC mode, FLC mode will downgrade to PIT mode when in USP for more than 10 seconds.

If USP engages while in ALT mode, upon USP disengagement FD will command bars to regain pre-selected altitude (altitude selected before USP engagement). Pilot must monitor A/P to check if previous pre-selected altitude is still attainable with energy available. It is recommended in this case to preselect a new altitude in order to speed-up energy management and recover from slow speed conditions.

When USP becomes active, expect a small FD adjustment due to reaction to very low speed condition.

P2010 - Aircraft Flight Manual Page APV 1-30

13.2.1 ALTITUDE CRITICAL MODES (ALT, GS, GP, TO, GA, FLC)

When the airspeed trend vector (dedicated algorithm) reaches 65 +/- 2 KIAS a single aural "AIRSPEED" will sound, alerting the pilot to the impending underspeed condition, which requires pilot action.

If the aircraft decelerates to stall warning and a speed of 65 KIAS is reached, the lateral and vertical flight director modes will change from active to armed and the autopilot will provide input causing the aircraft to pitch down and the wings to level.

The aural "AIRSPEED" alert will sound every five seconds.

If aircraft is unintentionally decelerated to 65 KIAS, a MINSPD annunciation posts above the airspeed tape on PFD in alternating amber and black text. A red "UNDERSPEED PROTECT ACTIVE" annunciation will appear to the right of the vertical speed indicator. USP will drive the pitch down until the indicated airspeed increases above 70 KIAS or stall warning turns off, plus two knots (whichever comes first).

When USP disengages, autopilot will cause the aircraft to pitch up until recapturing the vertical reference (vertical and lateral flight director modes will change from white armed to green active).

13.2.2 NON ALTITUDE CRITICAL MODES (VS, VNAV, IAS)

When the **airspeed trend vector** (dedicated algorithm) reaches 65 +/- 2 KIAS a single aural "AIRSPEED" will sound, alerting the pilot to the impending underspeed condition, which requires pilot action.

If the aircraft is allowed to decelerate to an IAS below the minimum commandable autopilot airspeed (65 Kts for P2010), a red "UNDERSPEED PROTECT AC-TIVE" annunciation appear to the right of the vertical speed indicator.

Vertical flight director mode will change from active to armed, Flight Director and autopilot will command the aircraft to pitch down until reaching a pitch attitude at which IAS equals at least the minimum commandable autopilot airspeed, avoiding the development of a stall condition.

When airspeed increases (as a result of adding power/thrust) to an IAS above 70 KIAS, USP will then disengage and the autopilot will command the aircraft to pitch up until recapturing the vertical reference (vertical vertical flight director mode will switch from white armed to green active).

Supplement D07: pages replacement instructions

SECTION 2 - LIMITATIONS

Make sure you first applied instructions reported on the basic AFM, **Section 2 Limitations**

According to A/C configuration apply following pages replacement:

Supplement D07 LIMITATIONS page		AFM Section 2 page
APV 2-7	REPLACES	2-7 of basic AFM, Section 2
APV 2-9 thru 10	REPLACES	2-9 thru 10 of basic AFM, Section 2
APV 2-15	REPLACES	2-15 of basic AFM, Section 2
APV 2-17 thru 20	REPLACES	2-17 thru 20of basic AFM, Section 2

Ed. 1, Rev.0

INTENTIONALLY LEFT BLANK

Section 9 - SupplementsEd. 1, Rev.0Supplement no. D07GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES

P2010 - Aircraft Flight Manual Page APV 2-7

4. POWERPLANT LIMITATIONS

Following table reports the operating limitations the installed engine:

ENGINE MANUFACTURER: Lycoming Engines **ENGINE MODEL: IO-360-M1A**

MAXIMUM POWER:

	Max Power (hp)	Max rpm. Prop. rpm
Max. T.O.	180	2700
Max. Cont.	173.3	2600

Temperatures:

Max CHT	500° F (260° C)
Max Oil	245° F (118° C)

Oil Pressure:

Minimum Idling	25 psi (1.7 Bar)
Minimum Normal	55 psi (3.8 Bar)
Maximum Normal	95 psi (6.5 Bar)
Starting, Warm-up, taxi and take-off (Max)	115 psi (7.9 Bar)

Fuel pressure:

- At Inlet to fuel injector:	
Minimum	14 psi (0.96 Bar)
Maximum	35 psi (2.41 Bar)

Powerplant limitations

EXTECNAM P2010 - Aircraft Flight Manual Page APV 2-9

5. PAINT

To ensure that the temperature of the composite structure does not exceed limits, the outer surface of the aeroplane must be painted with white paint, except for areas of registration marks, placards, and ornament.

Refer to Aircraft Maintenance Manual (AMM), ATA Chapter 4 and 51, for specific paint requirements.

6. PROPELLER

MANUFACTURER:	MT Propeller
MODEL :	MTV 15B/193-52
ТҮРЕ:	wood/composite 2-blade, variable pitch
DIAMETER:	1930 mm (76 in) (no reduction is permitted)

7. MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 12000 ft (3658 m) MSL.

At altitudes above 10000 ft (3048 m) up to and including 12000 ft (3658 m), flight crew is recommended to use supplemental oxygen.

8. AMBIENT TEMPERATURE

Ambient temperature: from -25°C to +50°C.

Flight in expected and/or known icing conditions is forbidden.

P2010 - Aircraft Flight Manual

Page APV 2-10

4. POWERPLANT INSTRUMENT MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

INSTRUME	CNT	RED ARC Minimum limit	WHITE ARC Advisory	GREEN ARC Safe operation	YELLOW ARC Caution	RED ARC Maximum limit
PROPELLER	RPM	/	/	950-2600	0-950 2600-2700	2700 (line)
OIL TEMP.	°F	/	/	140-245	0 - 140	245 - 255
СНТ	°F	/	435 (line)	150-475	0 – 150 475-500	500-510
EGT	°F	/	1000-1500	/	1375 (line)	1500-1550
OIL PRESS	psi	0-25	/	55-95	25 - 55 95-115	115 - 125
FUEL PRESS	psi	0-14	/	14-35	/	35 - 40
FUEL QTY	litres 0	0	1	0-115	1	/
	gal	0	/	0-30,4	7	/
FUEL FLOW	l/hr	/	0-75	/	/	/
FUEL FLOW	gal/hr	1	0-20	/	1	/

5. OTHER INSTRUMENT MARKINGS

Instrument	RED ARC	GREEN ARC	YELLOW ARC	RED ARC
	Minimum limit	Safe operation	Caution	Maximum limit
Voltmeter	20-21 Volt	24–30 Volt	21–24 Volt	30-31

1st Edition, Rev.0

P2010 - Aircraft Flight Manual Page APV 2-15

19 LIMITATIONS PLACARDS

Hereinafter limitation placards, related to the operating limitations, are placed in plain view on the pilot.

19.1 SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

19.2 OPERATING LIMITATIONS

On the central side of the instrument panel, the following placard is placed reminding the observance of aircraft operating limitations according to installed equipment configuration, see KOEL paragraph 18.

> THIS A/C CAN BE OPERATED ONLY IN NORMAL CATEGORY DAY-NIGHT-VFR-IFR (WITH REQUIRED EQUIPMENT)IN NON-ICING CONDITIONS. NO AEROBATICS MANOEUVRES, INCLUDING SPINNING, APPROVED. FOR OPERATIONAL LIMITATIONS REFER TO FLIGHT MANUAL

When the Autopilot is installed, next placard is added on the instrument panel to the right of the preceding one:

OPERATING LIMITATIONS FOR P2010 GARMIN GFC700 AUTOPILOT		
· Pilot with seat belt fastened must be seated at the left pilot position during A/P Ops	 Min. alt. AGL for A/P Operations are: 	
 Do not use A/P during take-off and landing 	Cruise and descent: 800 ft AGL	
· For RNAV/RNP departures, navigation and approaches pilot must confirm GPS, RAIM a	nd · Climb after T/O and during non-precision approaches: 400 ft AGL	
SBAS system availability, in order to comply with appropriate minimum requirements.	Cat.1 ILS Approches only (200ft AGL)	

19.3 NO SMOKING PLACARD

On the right hand side of the instrument panel the following placard is placed reminding the observance for "no smoking":

P2010 - Aircraft Flight Manual Page APV 2-17

20 AUTOPILOT LIMITATIONS

NOTE

The "Garmin G1000 Pilot's Guide for the Tecnam P2010" (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version) must be carried in the aircraft and made available to the pilot at all time.

Following operating limitations shall apply when the aircraft is equipped with Garmin GFC700 Autopilot:

- The Autopilot is certified for Category I ILS Approaches [with a decision height not lower than 200 ft AGL (61 m)]
- During Autopilot operation, a pilot with seat belt fastened must be seated at the left pilot position
- Maximum speed for Autopilot operation is 150 KIAS
- Do not use autopilot for airspeed below 70 KIAS
- Minimum approach speed is 70 KIAS
- The autopilot must be OFF during takeoff and landing
- Minimum altitude AGL for Autopilot operation is:
 - b. Cruise and Descent: 800 ft (244 m) AGL
 - c. Climb after Take-off: 400 ft (122 m) AGL
 - d. ILS CAT I precision approach: 200 ft (61 m) AGL
- Use of the autopilot or manual electric trim system is prohibited before the satisfactory completion of the Pre-flight procedure.
- Autopilot USP function requires flaps indicators lights in the cockpit to be efficient for correct operation. If one flap indicator light gets inoperative during flight, USP function is not assured.

P2010 - Aircraft Flight Manual Page APV 2-18

21 PBN (RNAV & RNP) OPERATIONAL ELIGIBILITY

21.1 GENERAL GNSS NAVIGATION EQUIPMENT APPROVALS

The GPS/GNSS receivers in the G1000 System are certified to TSO C129a Class A1 and ETSO C129a Class A1 or TSO C145a and ETSO 2C145a.

The Garmin GNSS navigation system as installed in this airplane complies with the requirements of AC 20-138A, JAA TGL-10 and AMCs 20-4A, 20-27A and 20-28.

It's approved for navigation using GPS and SBAS (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) for IFR en route, terminal area, precision and non-precision approach operations.

The G1000 System meets the requirements for GPS/GNSS as a Primary Means of Navigation for Oceanic/Remote Operations (RNP-10) per AC 20-138C, FAA Notice N8110.60, FAA Order 8400-12C and FAA Order 8700-1. Both GPS/GNSS receivers are required to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor.

In accordance to ICAO doc 9613 (Fouth Edition – 2013), the G1000 System has been shown to be eligible for:

- B-RNAV (RNAV-5) per AMC 20-4A.
- RNAV1 / P-RNAV (RNP-1) Enroute and Terminal navigation per JAA TGL-10 Rev.1.
- RNP APCH LNAV/VNAV per EASA AMC 20-27. This does not include APV BARO-VNAV operation which is not cleared.
- LPV with SBAS per EASA AMC 20-28.

provided that the G1000 is receiving usable navigation information from at least one GPS receiver.

1st Edition. Rev. 0

P2010 - Aircraft Flight Manual Page APV 2-19

21.2 G1000 GNSS (GPS/SBAS) NAVIGATION SYSTEM LIMITA-TIONS

The pilot must confirm at system initialization that the Navigation database is current. Navigation database is expected to be current for the duration of the flight.

If the AIRAC cycle will change during flight, the pilot must ensure the accuracy of navigation data, including suitability of navigation facilities used to define the routes and procedures for flight. If an amended chart affecting navigation data is published for the procedure, the database must not be used to conduct the procedure.

GPS/SBAS based IFR enroute, oceanic, and terminal navigation is prohibited unless the pilot verifies and uses a valid, compatible, and current Navigation database or verifies each waypoint for accuracy by reference to current approved data.

Discrepancies that invalidate a procedure must be reported to Garmin International. The affected procedure is prohibited from being flown using data from the Navigation database until a new Navigation database is installed in the airplane and verified that the discrepancy has been corrected.

Contact information to report Navigation database discrepancies can be found at www.Garmin.com>Support>Contact Garmin Support>Aviation. Pilots and operators can view navigation data base alerts at www.Garmin.com > In the Air> Nav-Data Alerts.

For flight planning purposes, in areas where SBAS coverage is not available, the pilot must check RAIM availability.

Within Europe, RAIM availability can be determined using the G1000 WFDE Prediction program or Europe's AUGER GPS RAIM Prediction Tool at http://augur.ecacnav.com/augur/app/home.

This requirement is not necessary if SBAS coverage is confirmed to be available along the entire route of flight.

The route planning and WFDE prediction program may be downloaded from the GARMIN G1000 website on the internet. For information on using the WFDE Prediction Program, refer to GARMIN WAAS FDE Prediction Program, part number 190-00643-01, WFDE Prediction Program instructions'.

For flight planning purposes for operations within European B-RNAV and P-RNAV airspace, if more than one satellite is scheduled to be out of service, then the availability of GPS integrity RAIM shall be confirmed for the intended flight (route and time).

In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended flight, the flight should be delayed, cancelled, or re-routed on a track where RAIM requirements can be met.

Both GPS navigation receivers must be operating and providing GPS navigation guidance to the PFD for operations requiring RNP-4 performance.

Whenever possible, RNP and RNAV routes including Standard Instrument Departures (SIDs) and Obstacle Departure Procedures (ODPs), Standard Terminal Arrival (STAR), and enroute RNAV "Q" and RNAV "T" routes should be loaded into

1st Edition, Rev. 0

Section 2 – Limitations PBN (RNAV & RNP) OPERATIONAL ELIGIBILITY

AFMS N°D07 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED COSTRUZIONI AERONAUTICHE AEROPLANES

P2010 - Aircraft Flight Manual Page APV 2-20

the flight plan from he database in their entirety, rather than loading route waypoints from the database into the flight plan individually. Selecting and inserting individual named fixes from the database is permitted, provided all fixes along the published route to be flown are inserted. "GPS", "or GPS", and "RNAV (GPS)" instrument approaches using the G1000 System are prohibited unless the pilot verifies and uses the current Navigation database. GPS based instrument approaches must be flown in accordance with an approved instrument approach procedure that is loaded from the Navigation database.

Not all published Instrument Approach Procedures (IAP) are in the Navigation database.

Pilots planning on flying an RNAV instrument approach must ensure that the Navigation database contains the planned RNAV Instrument Approach Procedure and that approach procedure must be loaded from the Navigation database into the FMS flight plan by its name.

The navigation equipment required to join and fly an instrument approach procedure is indicated by the title of the procedure and notes on the IAP chart.

Use of the GARMIN G1000 GPS/SBAS receivers to provide navigation guidance during the final approach segment of an ILS, LOC, LOC-BC, LDA, SDF,MLS or any other type of approach not approved for "or GPS" navigation is prohibited. When using the G1000 VOR/LOC/GS receivers to fly the final approach segment, VOR/LOC/GS navigation data must be selected and presented on the CDI.

SID/STAR

The use of SIDs and STARs stored in GPS data base is only authorized, if the pilot has checked that GPS procedure corresponds to the one given in the official documentation (coordinates of various points and paths between points).

1st Edition, Rev. 0

Supplement D07: pages replacement instructions

SECTION 3 - EMERGENCY PROCEDURES

Make sure you first applied instructions reported on the basic AFM, Section 3 Emergency Procedures

According to A/C configuration apply following pages replacement:

Supplement D07 EMERGENCY PROCEDURES page		AFM Section 3 page
APV 3-14	REPLACES	3-14 of basic AFM, Section 3
APV 3-18 thru 19	REPLACES	3-18 thru 19 of basic AFM, Section 3
APV 3A-31 thru 35	REPLACES	Added at the end of Section 3 of basic AFM

INTENTIONALLY LEFT BLANK

Section 9 – Supplements Supplement no. D07 GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES

Ed 1, Rev. 0

EXTECNAM P2010 - Aircraft Flight Manual

Page APV 3-14

6.3.PROPELLER OVERSPEED

In case of propeller overspeed in flight, apply following procedure:

- 1. Throttle Lever REDUCE power
- 2. Propeller Lever D
- Decrease RPM As required
- 3. Mixture Lever As
- 4. RPM indicator CHECK

If it is not possible to decrease propeller rpm, **land as soon as possible** applying *Forced landing* procedure. *(See Para 11)*

Maximum propeller rpm exceedance may cause engine components damage. Monitor engine RPM; overspeed shall be prevented by retarding propeller lever.

6.4.IRREGULAR RPM

- 1. Fuel pump:ON
- 2. Fuel quantity and pressure indicators:CHECK
- 3. If necessary: SWITCH TANK

If engine continues to run irregularly

> Land as soon as possible.

EXTECNAM P2010 - Aircraft Flight Manual

6.10. DEFECTIVE ENGINE CONTROLS

Defective Mixture Control Cable

- 1. Maintain altitude to the nearest arfield
- During descent, check engine behaviour to a higher power setting. A lean mixture can lead to engine roughness and loss of power. Landing approach must be planned accordingly.

Go-around may then be impossible.

Defective Throttle Control Cable

If power is sufficient to continue flight:

- 1. Approach nearest airfield, control engine power with Propeller lever
- 2. Perform landing with shut-down engine applying *Forced landing procedure. (See Para 11)*

If power is not sufficient to continue flight:

1. Carry out Forced landing procedure. (See Para 11)

Defective Propeller Lever Control Cable

If power is sufficient to continue flight:

- 1. Approach nearest airfield, control engine power with throttle
- 2. Perform normal landing.

Go-around may then be impossible.

If power is not sufficient to continue flight:

1. Carry out Forced landing procedure. (See Para 11)

Page APV 3-18

COSTRUZION A ROMANTICHE P2010 - Aircraft Flight Manual Page APV 3-19

7. INFLIGHT ENGINE RESTART

7.1.PROPELLER WINDMILLING

In case of engine shutdown, propeller will keep windmilling and will not stop, preventing the use of ignition key. Engine inflight restart must be performed without using ignition key with propeller windmilling in order to avoid possible engine damages.

Typical indication of a potential engine shutdown, with windmilling propeller, will be RPM running sub-idle below 600-500 RPM, to be confirmed by other engine instrument (OIL Pressure, CHT, EGT running down abnormally).

Inflight engine restart may be performed during 1g flight anywhere within the normal operating envelope of the airplane.

1.	Master switch	Check ON
2.	Fuel pump	ON
3.	Fuel quantity indicator	CHECK
4.	Fuel Selector	SWITCH TANK
5.	Throttle Lever	Minimum 1cm. above IDLE
6.	Propeller Lever	Full forward
7.	Mixture	FULL rich
8.	Throttle lever	SET as required

In case of unsuccessful engine restart:

Land as soon as possible applying Forced landing procedure. (See Para 11 Errore. L'origine riferimento non è stata trovata.)

In case of successful engine restart:

Land as soon as possible

After engine restart, if practical, moderate propeller rpm to allow the temperatures for stabilizing in the green arcs.

1st Edition, Rev.0

P2010 - Aircraft Flight Manual Page APV 3-31

12 AUTOPILOT EMERGENCY PROCEDURES

In the event of autopilot malfunction, or when the system is not performing as expected or commanded, take immediately the aircraft control disconnecting the autopilot which must be set inoperative until the failure has been identified and corrected.

12.1 AUTOPILOT HARDOVER OR FAILURE TO HOLD THE SELECTED HEADING

In case of A/P hardover or failure to hold selected heading, apply following procedure:

Accomplish items 1 and 2 simultaneously:

1. Airplane control wheel	GRASP FIRMLY and OVERPOWER if necessary to regain aircraft control
2. AP DISC/TRIM INTR switch	PRESS
3. AP MASTER SWITCH	OFF
4. AP Circuit Breaker	PULL

NOTE

Following an A/P or MET system malfunction, do not engage the autopilot until the cause of the malfunction has been corrected.

When Autopilot is disconnected, it may be necessary operate the pitch trim through either the Manual Electric Trim Switch or the Trim Wheel.

1st Edition, Rev. 0

P2010 - Aircraft Flight Manual Page APV 3-32

12.2 ALTITUDE LOST DURING A PITCH AXIS AUTOPILOT MALFUNC-TION AND RECOVERY

Following table addresses the altitude lost during a pitch axis malfunction and recovery for each reported flight phase:

Flight phase	Altitude loss	
Climb	90 ft	
Cruise	200 ft	
Descent	170 ft	
Maneuvering	210 ft	
Approach	70 ft	

12.3 ELECTRIC TRIM MALFUNCTION

In case of Electric Trim malfunction (either in AP Autotrim mode or when manually operated through the Manual Electric Trim Switch), apply following procedure:

1.	AP DISC/TRIM INTR switch	PRESS and HOLD
2.	TRIM MASTER SWITCH	OFF
3.	TRIM Circuit Breaker	PULL
4.	AP DISC/TRIM INTR switch	RELEASE

When Autopilot is disconnected because of a pitch trim malfunction, hold the control wheel firmly.

When electric trim is disconnected, it is necessary operate the pitch trim through the Trim Wheel.

NOTE

When electric trim is disconnected, Autopilot system can be operated both in pitch and roll modes; nevertheless, when a pitch mode (ALT HOLD, VS, GS) is engaged, the Autopilot will provide an annunciation whenever it is necessary to manually trim the aircraft about the pitch axis using the Trim Wheel. Make reference to "Garmin G1000 Integrated Avionic System Pilot's Guide" for Tecnam P2010 (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version).

1st Edition, Rev. 0

Section 3 – Emergency procedures AUTOPILOT EMERGENCY PROCEDURES

P2010 - Aircraft Flight Manual Page APV 3-33

12.4 AMPLIFIED EMERGENCY PROCEDURES

The following observations provide additional information for more complete understanding of the recommended course(s) of action in emergency situations.

- 1. An autopilot or autotrim malfunction occurs when there is an uncommanded deviation in the airplane flight path or when there is abnormal control wheel or trim wheel motion. In some cases, (especially for autopilot trim), there may be little to no airplane motion, but the PITCH TRIM annunciator (LH side of PDF) may come on.
- 2. The primary concern in reacting to an autopilot or autopilot trim system malfunction, or to an automatic disconnect of the autopilot, is to keep control of the airplane. Immediately grasp the control wheel and push and hold the A/P DISC/TRIM INT switch throughout the recovery. Manipulate the controls as required to safely keep the airplane within all of its operating limitations. Elevator trim should be used manually as needed to relieve control forces.

Switch the AP MASTER SWITCH to OFF and, when time is available after aircraft recovery, open (pull) the AUTOPILOT circuit breaker on the lower right hand corner of the circuit breaker panel to completely disable the autopilot system.

3. A MET (Manual Electric Trim) system malfunction (without pilot actuation of the manual electric trim switches) may be recognized by the PITCH TRIM annunciator coming on or by unusual trim wheel motions with the autopilot not engaged. As with an autopilot malfunction, the first concern following a manual electric trim system malfunction is to keep the airplane in control. Grasp the control wheel firmly and push and hold down the A/P DISC/TRIM INT switch. Switch the trim cut-out switch to OFF.

1st Edition, Rev. 0

AEROPLANES

P2010 - Aircraft Flight Manual Page APV 3-34

12.5 ABNORMAL PROCEDURES

This table is a quick access table that provide additional information regarding residual A/P capabilities in case loss of autopilot servos and/or pitch trim servo.

With A/P engaged, in case of loss of both A/P servos and pitch trim servo, the disconnect tone will play continuously, until acknowledged through A/P button on MFD or trim switch on control wheel.

LOSS OF AP RITCH TRIM SERVO SERVO X X X X X X X X X X X X X				FSP STATUS	ATTIS	SITATS QUI	S
	A/P STATUS	NOTES	A/P FUNCTIONALITY	NO	OFF	NO	OFF
		<u>MEPT Unavailable</u>	A/P can be engaged, but			>	
		PTRM red on PFD NO VERT MODES on PFD	only lateral modes will be correctly flown (lack of pitch trim).	х		(can't hold 65 kts without pitch trim	
		PTRM C&M red cross on MFD SYS page	FD is operative in all modes			avaılab <i>l</i> e)	
		<u>A/P disconnect</u>					
		PTCH red annunciation on PFD NO VERT MODES on PFD	A/P can't be engaged		х		X (only
	DISPUNDEN	ESP Fail on alert window PTCH C&M red cross on MFD SYS page ROLL C&M red cross on MFD SYS page	r D is operative in all motes				warning)
		<u>A/P</u> disconnect & MEPT Una vailable					
		AFCS red annunciation on PFD (1")	A /D cont has a successful of				X
×		ESP Fail on alert window PTCH C&M red cross on MFD SYS page	FD is operative in all modes		x		MINSPD warning)
x		PTRM C&M red cross on MFD SYS page					
x		<u>MEPT Una vailable</u>				X	
		PTRM red annunciation on PFD NO VERT MODES on PFD	A/P fully operative FD is operative in all modes	×		(can't hold 65 kts without pitch trim	
		PTRM C&M red cross on MFD SYS page				avallable)	
		A/P disconnect					
Х		PTCH red annunciation on PFD NO VERT MODES on PFD	A/P disconnects and can't be engaged		х		X (only MINISPI
	ENGAGED	ESP Fail on window alert PTCH C&M red cross on MFD SYS page ROLL C&M red cross on MFD SYS page	FD is operative in all modes				warning)
		AP continuous disconnect tone can be silenced through the AP button on MFD and by the trim switch on control wheel					
>		<u>AP</u> disconnect & MEPT Unavailable AFCS red annunciation on PFD (1")	A/P disconnects and can't		>		X (only
<		NO VERT MODES on PFD	FD is operative in all modes		<		MINSPD warning)
		ESP Fail on alert window PTCH C&M red cross on MFD SYS page ROLL C&M red cross on MFD SYS page PTRM C&M red cross on MFD SYS page					

1st Edition, Rev. 0

Section 3 – Emergency procedures AUTOPILOT EMERGENCY PROCEDURES

P2010 - Aircraft Flight Manual Page APV 3-35

This table is a quick access table that provide additional information regarding residual A/P capabilities in case of loss of PFD or MFD.

PFD	MFD	NOTES		
$ON \rightarrow OFF$	ON	A/P reverts to PIT & ROLL (from any mode selected)		
		No aurals from A/P (both A/P DISC & USP)		
		A/P stays in the selected mode		
ON	$ON \rightarrow OFF$	A/P control keyboard unavailable		
		A/P can be disconnected with A/P DISC button on control		
		wheel		
		FD command bars cannot be eliminated		
		ESP Off on alert window on PFD		
	$ON \rightarrow OFF$	A/P automatically disconnects after ~ 4 to 5 seconds		
$ON \rightarrow OFF$		A/P disconnection tone plays endlessly until A/P DISC button		
		is pressed		

1st Edition, Rev. 0

Section 3 – Emergency procedures AUTOPILOT EMERGENCY PROCEDURES Supplement D07: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Make sure you first applied instructions reported on the basic AFM, **Section 4 Normal Procedures**

According to A/C configuration apply following pages replacement:

Supplement D07 NORMAL PROCEDURES page		AFM Section 4 page	
APV 4-7	REPLACES	4-7 of basic AFM, Section 4	
APV 4-15	REPLACES	4-15 of basic AFM, Section 4	
APV 4-19 thru 26	REPLACES	EPLACES 4-19 thru 26 of basic AFM, Section 4	
APV 4-27 thru 38	REPLACES	CES Added at the end of Section 4 of basic AFM	

Ed. 1, Rev.0

INTENTIONALLY LEFT BLANK

Section 9 - SupplementsEd. 1, Rev.0Supplement no. D07GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES

EXTECNAM P2010 - Aircraft Flight Manual Page APV 4-7

3. AIRSPEEDS FOR NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations.

	FLAPS	1160kg (2557lbs)
Rotation Speed (V_R)	T/O	60 KIAS
Best Angle-of-Climb Speed (V_X)	0°	75 KIAS
Best Rate-of-Climb speed (V_Y)	0°	82 KIAS
Flaps (V _{FE})	T/O & LAND	91 KIAS
No flaps approach	0°	80 KIAS
Approach speed	T/O	75 KIAS
Final Approach Speed	FULL	70 KIAS
Manoeuvring speed (V_A)	0°	120 KIAS
Vglide	0°	84 KIAS
Never Exceed Speed (V_{NE})	0°	166 KIAS

COSTRUZION ARRONAUTICHE P2010 - Aircraft Flight Manual Page APV 4-15

5. CHECKLISTS

5.1. BEFORE STARTING ENGINE (AFTER PREFLIGHT INSPECTION)

- 1. Seat position and safety belts: adjust
- 2. Flight controls: operate full stroke checking for movement smoothness, free of play and friction.
- 3. Parking brake: *engage*
- 4. Throttle friction: adjust
- 5. Throttle: *IDLE*
- 6. Propeller Lever: *HIGH RPM*
- 7. Mixture control Lever: LEAN
- 8. Circuit Breakers: check all IN
- 9. Master switch: ON, wait PFD turn on, Check ALT OUT caution ON, Check LOW FP and LOW OP warning ON
- 10. Only before the first flight of the day:

Standby Instrument: Check no red crosses displayed.

- a. Press and hold the control knob (approx. 2 sec)
- b. Rotate the knob selecting "INFO>" page then press it
- c. Select "BATTERY INFO" page then press the knob
- d. Check "CHARGE (%)" to be more than 80%, then exit menu
- 11. Avionic Master switch: ON, wait MFD turn on, check instruments, check Voltage on Main and Essential Buses.
- 12. Fuel quantity: compare the fuel quantity indicators information with fuel quantity visually checked into the tanks (see Pre-flight inspection External inspection), then update the Garmin fuel content in the totalizer accordingly

NOTE

The totalizer function available on Garmin Engine page allows input only up to 230lts (maximum usable fuel). Initial Fuel indication on totalizer must be corrected manually (as it does not use the aircraft fuel quantity indicators as input). Once correctly initialized, fuel consumption on totalizer is very precise as it take instantaneous fuel flow for computation.

- 13. Electric fuel pump: ON (check for audible pump noise and increase of fuel pressure)
- 14. Warning "LOW FUEL PRESSURE": extinguished
- 15. Electric fuel pump: OFF
- 16. Flap control: cycle fully extended and then set to T/O
- 17. Pitch Trim: cycle fully up and down, then set to NEUTRAL
- 18. Rudder trim: cycle full right and left, then set to NEUTRAL

Pitch trim position other than in neutral position would affect take off performance and take off rotation execution at the correct V_R .

19. Nav & Strobe lights: ON

In absence of RH seat occupant: fasten seat belts around the seat in order to prevent any interference with the aeroplane flight control operation and with rapid egress in an emergency.

20. Doors: Closed and locked

CHECKLISTS

EXTECNAM P2010 - Aircraft Flight Manual Page APV 4-19

5.5. BEFORE TAKEOFF

- 1. Parking brake: brake pedal press, ON
- 2. Engine instruments: Check within limits
- 3. ALT OUT caution: OFF (check)
- 4. Electric Fuel pump: ON
- 5. Fuel selector valve: *select the fullest tank*
- 6. Fuel pressure: check
- 7. Mixture: FULL RICH

For 5000ft density altitude and above, or high ambient temperatures, a FULL RI mixture may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

- 8. Throttle: set 1500 RPM
 - a. Alternate Air check:
 - Alternate Air: PULL (Check drop 50-100 RPM)
 - b. Mixture check:
 - Mixture: *reduce*
 - EGT: *check increase*
 - FF: check decrease
 - Mixture: FULL RICH
- 9. Throttle: 2100 RPM
- 10. Propeller Lever:
 - Pull back until a drop of max. 500 RPM is reached then high RPM
 - Cycle 3 times
- 11. Magneto Check: L BOTH R BOTH
 - Max RPM drop: 175 RPM
 - Max. difference: 50 RPM
- 12. Throttle: *Idle*
- 13. Flaps: check T/O
- 14. Pitch and Rudder trim: check neutral
- 15. Flight controls: check free
- 16. Seat belts: check fastened
- 17. Doors: check closed and locked
- 18. Parking brake: Release
- 19. Landing light: ON as required
- 20. XPDR: ON

COSTRUZIONA AERONAUTICHE P2010 - Aircraft Flight Manual Page APV 4-20

5.6. TAKEOFF

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixt may cause rough running of the engine or a loss of performance. The mixture may be justed to obtain smooth engine operations.

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft den. altitude or higher.

During climb, a rough method of correctly leaning is to slowly reduce mixture lever until increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

- 1. Pitot HEAT: ON if required
- 2. Fuel pump: ON
- 3. Brakes: *apply*
- 4. Throttle: FULL and check approximately 2680 ± 20 RPM

NOTE

Engine proper performance at full throttle shall be checked early in the ground roll in order to abandon take-off if necessary.

A rough engine, sluggish RPM increase or failure to reach take-off RPM are reasons for abandoning the take-off. If the engine oil is cold, an oil pressure in the yellow sector is permissible.

- 5. Engine instruments: check parameters within the limits
- 6. Brakes: Release
- 7. Rotation speed V_R : 60 KIAS
- 8. Airspeed: 67 KIAS

Above a safe height:

- 9. Propeller lever: 2600 RPM
- 10. Landing lights: OFF

COSTRUZIONA AERONAUTICHE P2010 - Aircraft Flight Manual Page APV 4-21

5.7. CLIMB

NOTE

Due to position of fuel sensors, during climb fuel gauges in cockpit will indicate a fuel quantity slightly lower than the real amount. Regaining level flight will immediately restore correct indications.

For 5000ft density altitude and above, or high ambient temperatures, a FULL RICH mixture may cause rough running of the engine or a loss of performance. The mixture may be adjusted to obtain smooth engine operations.

Lean to maximum RPM at Full Throttle prior to take-off where airports are at 5000ft density altitude or higher.

During climb, a rough method of correctly leaning is to slowly reduce mixture lever until an increase of appr.ly 50-100 RPM is noticed at constant IAS or EGT reaches 1375°F mark.

1. Flaps: UP (minimum speed 73 KIAS)

NOTE

Expect to adjust pitch trim (pitch up) when retracting flaps after take-off

- 2. Establish climb Vy: 82 KIAS
- 3. Electrical fuel pump: OFF
- 4. Fuel pressure: check within limits
- 5. Throttle: FULL
- 6. MIXTURE: RICH, above 5000ft keep EGT constant
- 7. Engine instruments: in the GREEN

NOTE

If the fuel pressure warning light illuminates, or the fuel pressure indication is below green arc, the electrical fuel pump must be switched ON.

EXECTECNAM P2010 - Aircraft Flight Manual

Page APV 4-22

5.8. CRUISE

- 1. Power: set performance as required, refer to table in section 5 of AFM
- 2. Propeller lever: 1800-2400 RPM
- 3. Fuel tank selector: as required to maintain symmetric balance
- 4. Mixture: set in accordance with following para 5.9

To optimize engine life, the cylinder head temperature (CHT) should lie between $150^{\circ}F$ and $400^{\circ}F$ in continuous operation, and not rise above $435^{\circ}F$ in fast cruise.

Monitor and manually compensate asymmetrical fuel consumption by switching fuel selector valve. Switch ON the electric fuel pump prior to swap the fuel feeding from one tank to another.

5.9. MIXTURE ADJUSTMENT RECOMMENDATION

The maximum permissible cylinder head temperature (500 $^{\circ}F$) must never be exceeded.

The mixture control lever should always be moved slowly.

Before selecting a higher power setting the mixture control lever should, on each occasion, be moved slowly to fully RICH before throttle adjustment. Care should always be taken that the cylinders do not cool down too quickly.

The cooling rate should not exceed 50 °F per minute.

For maximum service life cylinder head temperature should be kept below 475 °F (high performance cruise) and below 435 °F (for economy cruise).

Best Cruise Economy Mixture

The best economy mixture setting may only be used up to a power setting of 75 %. In order to obtain the lowest specific fuel consumption at a particular power setting, proceed as follows:

- Slowly pull the mixture control lever back towards LEAN until the engine starts to run roughly.
- Then push the mixture control lever forward just far enough to restore smooth running. At the same time the exhaust gas temperature (EGT) should reach a maximum.

Best Cruise Power Mixture

The mixture can be set for maximum performance at all power settings:

- The mixture should first be set as for best economy.
- The mixture should then be enriched until the exhaust gas temperature is approximately 100°F lower.

This mixture setting produces the maximum performance for a given manifold pressure and is mainly used for high power settings (approximately 75 %).

COSTRUZIONI AFRONAUTICHE P2010 - Aircraft Flight Manual Page APV 4-23

5.10. DESCENT

NOTE

Due to position of fuel sensors, during descent fuel gauges in cockpit will indicate a fuel quantity slightly higher than the real amount. Regaining level flight will immediately restore correct indications.

- *1.* Mixture control: *slowly full rich*
- 2. Propeller lever: as required
- 3. Throttle: reduce as required

Shock cooling shortens engine life.

NOTE

When reducing power, the change in cylinder head temperature should not exceed 50°F per minute. In order to ensure best practice and avoid potential illumination of ALT FAIL (due to low propeller speed), the following best practice should be observed:

- *Reducing power to maintain a minimum descent speed of 84 KIAS (best glide) and / or a blade angle to maintain 850 RPM;*
- Opening the ALTER AIR command to full open (to avoid ice accretion).

<u>.</u>

CAUTION

The mixture control lever should always be moved slowly. Before selecting a higher power setting the mixture control lever should, on each occasion, be moved slowly to fully RICH.

The maximum permissible cylinder head temperature (500 °F) must never be exceeded.

Care should always be taken that the cylinders do not cool down too quickly. The cooling rate should not exceed 50 °F per minute.

TECNAM P2010 - Aircraft Flight Manual Page APV 4-24

5.11. BEFORE LANDING

- 1. Electric fuel pump: *ON*
- 2. Fuel valve: *select the fullest tank*
- 3. Landing Light: ON

On downwind, leg abeam touch down point:

4. Flaps: set T/O (below 90KIAS)

NOTE

Expect to adjust pitch trim (pitch down) when extending flaps to T/O or LAND

5. Approach speed: set

On final leg, before landing:

- 6. Mixture control lever: *RICH*
- 7. Propeller Lever: *HIGH RPM*
- 8. Flaps: *LAND*
- 9. Final Approach Speed: set
- 10. Optimal touchdown speed: 60 KIAS

In conditions such as (e.g.) strong wind, danger of windshear or turbulence a higher approach speed shall be selected..

5.12. BALKED LANDING/MISSED APPROACH

- 1. Throttle: *FULL*
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: *T/O*

Above a safe height:

- 4. Propeller lever: 2600 RPM
- 5. Landing lights: OFF

5.13. GO-AROUND

- 1. Throttle: FULL
- 2. Speed: keep over 80 KIAS, climb to V_Y or V_X as applicable
- 3. Flaps position: T/O

5.14. AFTER LANDING

- 1. Throttle: *Idle*
- 2. Brakes: *apply*
- 3. Pitot heat: OFF (if ON)
- 4. Flaps: UP
- 5. Electric Fuel Pump: OFF
- 6. XPDR: OFF
- 7. Landing light: *OFF*

COSTRUZION AERONAUTICHE P2010 - Aircraft Flight Manual Page APV 4-25

5.15. ENGINE SHUT DOWN

- 1. Parking brake: set
- 2. Keep engine running at 1200 propeller rpm for about one minute in order to reduce latent heat.
- 3. Avionic equipment: *OFF*
- 4. Throttle: *idle*
- 5. Magnetos: Check OFF BOTH
- 6. Mixture: closed
- 7. Ignition key: *OFF, key extracted*
- 8. Strobe light: *OFF*
- 9. Avionic Master: *OFF*
- 10. Master & Generator switches: OFF
- 11. Fuel selector valve: *OFF*

For safety, verify propeller is fully stopped before any other action.

Instruct passenger to fully open RH door and depart, avoiding contact with wheels and sharp wing control surfaces edges.

5.16. POSTFLIGHT CHECKS

- 1. Flight controls: *lock by means of seat belts*
- 2. Wheel chocks and wing mooring lines: Set
- 3. Parking brake: *Release*
- 4. Doors: *Close and lock*
- 5. Protection plugs: set over pitot tube, stall warning, static ports

COSTRUZION A REVNAUTICHE P2010 - Aircraft Flight Manual Page APV 4-26

5.17. FLIGHT IN RAIN

Performance deteriorates in rain; this applies particularly to take-off distance and maximum Horizontal speed. The effect on flight characteristics is minimal.

5.18. REFUELLING

Before refuelling, the airplane must be connected to electrical ground.

5.19. FLIGHT AT HIGH ALTITUDE

At high altitudes the provision of oxygen for the occupant is necessary. Legal requirements for the provision of oxygen should be adhered to (see para 2.9).

AEROPLANES

P2010 - Aircraft Flight Manual Page APV 4-27

6 AUTOPILOT NORMAL PROCEDURES

K TECNAM

For detailed description of A/P selections, behaviour and display outlook, refer to the "Garmin G1000 Pilot's Guide for the Tecnam P2010" (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version); it must be always carried in the aircraft and made available to the pilot at all time.

If A/P Master switch and /or Trim disconnect switch are inadvertently switched OFF, it will be necessary to reset both switches to allow A/P and pitch trim functionality. In this case pilot will make sure A/P is disengaged before reset. The single reset of only one of the switches will not permit to reset the single functionality.

PREFLIGHT:

AIRCRAFT PRE-FLIGHT CHECKS:

- 1) MASTER SWITCH (BAT): ON.
- 2) AVIONICS MASTER SWITCH: ON.
- 3) AUTOPILOT MASTER SWITCH: ON.

4) POWER APPLICATION and SELFCTEST - The autopilot tests itself when power is first made available. The test is a sequence of internal checks before starting normal system operation. The test sequence is shown on PFD left upper corner by the red AFCS label followed by the white PFT label, ending with double AP disengagement tone (which indicates a successful completion).

Autopilot system availability is shown under system page on MFD.

If the red AFCS stays ON, the A/P has failed the preflight test. Put the A/P MASTER SWITCH OFF to make sure that the A/P will not operate.

5) MANUAL ELECTRIC TRIM (MET) SYSTEM - TEST.

Pitch Trim: cycle fully up and down, then set to NEUTRAL.

NOTE

Both pitch trim halves must be actuated to move pitch trim. Any movement of the elevator trim wheel during the check of either the LH or RH Switch only means that the Manual Electric Trim System has failed.

- 6) ELEVATOR TRIM WHEEL SET pointer to takeoff position.
- 7) AVIONICS MASTER SWITCH: OFF
- 8) MASTER SWITCH (BAT): OFF

P2010 - Aircraft Flight Manual Page APV 4-28

7 AUTOPILOT MODES

K TECNAM

When the A/P is engaged, the pilot must continuously monitor and be ready to disengage the A/P. Do the Emergency Recovery procedure if A/P operation is erratic or does not correctly control the airplane.

The "Garmin G1000 Pilot's Guide for the Tecnam P2010" (Part No. 190-01830-00 Revision A dated September 25, 2014 or a more updated version) must be carried in the aircraft and made available to the pilot at all time.

Autopilot tracking performance will not be as good as usual in turbulence.

Autopilot engagement / disengagement is not equivalent to servo engagement/disengagement. Use the CWS Button to disengage the pitch and roll while the autopilot remains active.

HDG

Pressing the HDG knob synchronizes the Selected Heading to the current heading.

In this case expect a small heading overshoot that will be subsequently corrected.

VS MODE

Selection of a vertical speed beyond the capability of the aircraft can create a condition of reduced airspeed, and possibly lead to USP activation.

During A/P operation, pilot must set the A/P Vs rate and engine power to make sure that airspeed remains within autopilot envelope and does not exceed any other airplane operating limitation.

VS is an open mode, which will engage irrespective of Selected Altitude. Pilot monitoring is always required to make sure that a correct Selected Altitude is shown on PFD.

SELECTED ALTITUDE CAPTURE MODE (ALTS)

Pressing the CWS Button while in Selected Altitude Capture Mode does not cancel the mode.

AEROPLANES

P2010 - Aircraft Flight Manual Page APV 4-29

ALTITUDE HOLD MODE (ALT)

K TECNAM

Turning the ALT knob while in Altitude Hold Mode changes the Selected Altitude, but not the FD Altitude Refrence, and does not cancel the mode.

FLC MODE

The Selected Altitude <u>MUST</u> be set before selecting Flight Level Change Mode.FLC IAS selection is directly linked to actual IAS, pilot will need to monitor airspeed after selection of FLC mode.

VERTICAL NAVIGATION MODES (VPTH, ALTV)

VNV is disabled when parallel or dead reckoning mode is active.

The selected altitude takes precedence over any other vertical constraints.

NOTE

If another pitch mode key is pressed while Vertical Path Tracking Mode is selected, VPTH mode reverts to armed.

If the selected altitude is not at least 75 ft below the VNV Target Altitude, the FD captures the Selected Altitude once Vertical Path Tracking Mode become active (ALTS is armed rather than ALTV).

Altitude preselect must show an altitude **below** the flight plan's Target Altitude.

If the selected altitude is not at least 75 ft below the VNV Target Altitude, the FD captures the Selected Altitude once Vertical Path Tracking Mode become active (ALTS is armed rather than ALTV).

If VPTH is armed more than 5 minutes prior to descent path capture, acknowledgement is required for the FD to transition from Altitude Hold to VPTH.

To proceed with descent path capture if the white "VPTH" flashes, do the following:

- Press VNV Kay
- Turn ALT knob to adjust the Selected Altitude.

If the selected altitude is not at least 75 ft below the VNV Target Altitude, the FD captures the Selected Altitude once Vertical Path Tracking Mode become active (ALTS is armed rather than ALTV).

Armed VNV Target Altitude and Selected Altitude capture modes are mutually exclusive. Selected Altitude Capture Mode is armed also (not annunciated) whenever VNV Target Altitude Capture Mode is armed.

APPROACH MODES

The selected navigation receiver must have a valid VOR or LOC signal or active GPS course for the flight director to enter Approach Mode.

1st Edition, Rev.0

AEROPLANES

P2010 - Aircraft Flight Manual Page APV 4-30

8 AUTOPILOT ABNORMAL PROCEDURES

Loss of a single GPS:

K TECNAM

In case of loss of a single GPS, RNAV guidance will still be available as the system will automatically revert to the other available GPS without losing any autopilot / FD guidance.

The ALERT window will switch to ADVSY and start to flash; when selected a "AHRS1 GPS – AHRS1 using backup GPS source" CAS message will appear inside the alert window.

Loss of both GPS:

In case of loss of both GPS, RNAV guidance will not be available anymore.

The ALERT window will switch to ADVSY and start to flash; when selected a "GPS NAV LOST – Loss of GPS navigation. Insufficient satellites" CAS message will appear inside the alert window. In this case also ESP will be lost and the "ESP OFF" CAS message will also appear inside the alert window.

Further to that, a yellow "LOI" (loss of integrity) CAS message will be displayed on the HIS and all other GPS related information (e.g. wind) will turn to yellow.

If GPS nave mode is being selected, the HSI on the PFD will not display the deviation bar. If GPS is selected as navigation source a "AHRS1 GPS – AHRS1 operating exclusively in no-GPS mode" CAS message will appear inside the alert window.

NOTE

Dead Reckoning Mode only functions in Enroute (ENR) or Oceanic (OCN) phase of flight. In all other phases, an invalid GPS solution produces a "NO GPS POSITION" annunciation on the map and the G1000 stops using GPS.

It is important to note that estimated navigation data supplied by the G1000 in DR Mode may become increasingly unreliable and must not be used as a sole means of navigation. If while in DR Mode airspeed and/or heading data is also lost or not available, the DR function may not be capable of accurately tracking estimated position and, consequently, the system may display a path that is different than the actual movement of the aircraft. Estimated position information displayed by the G1000 through DR while there is no heading and/or airspeed data available shall not be used for navigation.

DR Mode is inherently less accurate than the standard GPS/SBAS Mode due to the lack of satellite measurements needed to determine a position.

P2010 - Aircraft Flight Manual Page APV 4-31

NOTE

Changes in wind speed and/or wind direction compound the relative inaccuracy of DR Mode. Because of this degraded accuracy, other navigation equipment must be relied upon for position awareness until GPSderived position data is restored.

DR Mode is indicated on the G1000 by the appearance of the letters 'DR' superimposed in yellow over the 'own aircraft' symbol.

In addition, 'DR' is prominently displayed in yellow on the HSI slightly above and to the right of the aircraft symbol on the CDI. Also, the CDI deviation bar is removed from the display. Lastly, but at the same time, a 'GPS NAV LOST' alert message appears on the PFD.

Normal navigation using GPS/SBAS source data resumes automatically once a valid GPS solution is restored. As a result of operating in DR Mode, all GPS-derived data is computed based upon an estimated position and is displayed as yellow text on the display to denote degraded navigation source information.

Also, while the G1000 is in DR Mode, some terrain functions are not available. Additionally, the accuracy of all nearest information (airports, airspaces, and waypoints) is questionable. Finally, airspace alerts continue to function, but with degraded accuracy.

RAIM AVAILABILITY:

Because of tighter protection limit on approaches, there may be times when RAIM is not available. The G1000 automatically monitors RAIM and warns with an alert message when it is not available. If RAIM is not predicted to be available for the final approach course, the approach does not become active, as indicated by the message "Approach is not active".

If RAIM is not available when crossing the FAF, the missed approach procedure must be flown.

9 ADDITIONAL GUIDANCE FOR RNAV GPS

Experience of RNAV systems, and Flight FMS in general, has identified the pitfalls of waypoint entry error at the receiver as well as inaccuracies and errors in the database itself.

Research and experience have both shown that human error, often the result of a lack of familiarity with the airborne equipment, represents the major hazard in operations using RNAV systems. Therefore, it is imperative that pilots understand their system thoroughly and are able to determine whether it is safe to proceed.

This requires robust procedures, which check for possible errors in the computer database, monitor continued performance of the RNAV systems and enable pilots to identify and avoid not only their own mistakes but also errors in the information presented to them.

Flight planning on RNAV routes should include the following recommendation.

- During the pre-flight planning phase, given a GPS constellation of 23 satellites or less (22 or less for GPS stand-alone equipment that incorporate pressure altitude aiding), the availability of GPS integrity (RAIM) should be confirmed for the intended flight (route and time). This should be obtained from a prediction program either ground-based, or provided as an equipment function, or from an alternative method acceptable to the Authority;

- Where a navigation data base is installed, the data base validity (current AIRAC cycle) should be checked before flight;

- Traditional navigation equipment (e.g. VOR, DME and ADF) should be selected to available aids so as to allow immediate cross-checking or reversion in the event of loss of GPS navigation capability.

(a) Pre-flight Planning

During the pre-flight planning phase, the availability of the navigation infrastructure, required for the intended operation, including any non-RNAV contingencies, must be confirmed for the period of intended operation. Availability of the onboard navigation equipment necessary for the route to be flown must be confirmed. The onboard navigation database must be appropriate for the region of intended operation and must include the navigation aids, waypoints, and coded terminal airspace procedures for the departure, arrival and alternate airfields.

Where the responsible airspace authority has specified in the AIP that dual PRNAV systems are required for specific terminal P-RNAV procedure, the availability of dual P-RNAV systems must be confirmed. This typically will apply where procedures are effective below the applicable minimum obstacle clearance altitude or where radar coverage is inadequate for the purposes of supporting P-RNAV. This will also take into account the particular hazards of a terminal area and the feasibility of contingency procedures following loss of P-RNAV capability.

RAIM availability must be confirmed with account taken of the latest information.

Page APV 4-32

AEROPLANES

P2010 - Aircraft Flight Manual Page APV 4-33

(b) Departure

K TECNAM

At system initialisation, the flight crew must confirm that the navigation database is current and verify that the aircraft position has been entered correctly. The active flight plan should be checked by comparing the charts, SID or other applicable documents, with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will use a specific navigation aid(s), or to confirm exclusion of a specific navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database.

The creation of new waypoints by manual entry into the RNAV system by the flight crew is not permitted as it would invalidate the affected P-RNAV procedure.

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion. This may include the insertion in the flight plan of waypoints loaded from the database.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness, by cross-checks, with conventional navigation aids using the primary display.

(c) Arrival

Prior to the arrival phase, the flight crew should verify that the correct terminal procedure has been loaded. The active flight plan should be checked by comparing the charts with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will exclude a particular navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database.

Note: as a minimum, the arrival checks could be a simple inspection of a suitable map display that achieves the objectives of this paragraph.

The creation of new waypoints by manual entry into the RNAV system by the flight crew would invalidate the P-RNAV procedure and is not permitted.

Where the contingency to revert to a conventional arrival procedure is required, the flight crew must make the necessary preparation.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness by cross-checks with conventional navigation aids using the primary display.

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion.

Although a particular method is not mandated, any published altitude and speed constraints must be observed.

In the event that either the GPS or the EGNOS signal is not available at the destination, by the nature of the system, and its susceptibility to interference, there exists the possibility that it will also be unavailable over a wide area. Therefore it is probable that the signal will also be unavailable at a nearby diversion aerodrome.

Notwithstanding any normal operational requirements for the identification of an alternate aerodrome, where a RNAV approach is to be flown in conditions where a visual approach will not be possible; pilots should always ensure that either:

- 1) A different type of approach system is available at the destination, not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach, or;
- 2) There is at least one alternate destination within range, where a different type of approach system is available, which is not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach.

9.1 APPROACH APPLICATIONS

NOTE

When GPS is not approved for the selected final approach course, the message "NOT APPROVED FOR GPS" is displayed. GPS provides guidance for the approach, but the HIS must be switched to a NAV receiver to fly the final course of the approach.

NOTE

If certain GPS parameters (SBAS, RAIM, etc.) are not available, some published approach procedures for the desired airport may not be displayed in the list of available approaches.

An Approach Procedure (APPR) can be loaded at any airport that has one available, and provides guidance for non-precision and precision approaches to airports with published instrument approach procedures.

NOTE

Only one approach can be loaded at a time in a flight plan. If an approach is loaded when another approach is already in the active flight plan, the new approach replaces the previous approach. The route is defined by selection of an approach and the transition waypoints.

Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

When selecting an approach, a "GPS" designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver can be used for supplemental navigation guidance only.

NOTE

If the GPS receiver cannot be used for primary guidance, the appropriate navigation receiver must be used for the selected approach (e.g., VOR or ILS). The final course segment of ILS approaches, for example, must be flown by tuning the NAV receiver to the proper frequency and selecting that NAV receiver on the CDI.

The G1000 SBAS GPS allows for flying LNAV, LP, LP+V and LPV approach service levels according to the published chart. The '+V' designation adds advisory vertical guidance for assistance in maintaining a constant vertical glidepath similar to an ILS glideslope on approach. This guidance is displayed on the system PFD in the same location as the ILS glideslope using a magenta diamond. A sample of how the active approach service level is annunciated on the HSI is shown in the following table:

HSI Annunciation	Description	Example on HSI
LNAV	RNAV GPS approach using published LNAV minima	351°
LP (available only if SBAS available)	RNAV GPS approach using published LP minima (downgrades to LNAV if SBAS unavailable)	111133 N
LP+V (available only if SBAS available)	RNAV GPS approach using published LP minima Advisory vertical guid- ance is provided (down- grades to LNAV if SBAS unavailable)	Approach Service Level - LNAV, LP, LP+V, LPV
LPV (available only if SBAS available)	RNAV GPS approach using published LPV minima	

Before reaching the IAF, the flight crew should verify that the correct procedure has been loaded into the receiver's route or flight plan. A comparison with the approach chart should be made including the following:

- a) The waypoint sequence.
- b) Reasonableness of the tracks and distances of the approach legs, accura cy of the inbound course and mileage of the FAS.
- c) Verify from the charts, map display or CDU, which waypoints are flyby and which are fly-over.
- d) Check any map display to ensure the track lines actually 'fly-over' or 'fly-by' the respective waypoints in the procedure.

By the time the aircraft reaches the IAF the pilot should have completed the above and been cleared for the approach. Also, the approach must have been activated in the receiver at least by this time.

Approach Applications which are classified as RNP Approach (APCH) in accordance with ICAO Doc 9613 Performance Based Navigation (PBN) Manual (and ICAO state Letter SP65/4-10/53) give access to minima (on an instrument approach procedure) designated as:

LNAV (Lateral Navigation)

This is a Non-Precision or 2D Approach with Lateral only navigation guidance provided by GNSS and an Aircraft Based Augmentation System (ABAS). Receiver Autonomous Integrity Monitoring (RAIM) is a form of ABAS. Lateral guidance is linear with accuracy to within +/- 0.3 NM parallel to either side of the final approach track.

LP (Localiser Performance)

This is a Non-Precision or 2D Approach with Lateral only navigation guidance provided by GNSS and SBAS. The EGNOS is a form of SBAS in Europe. The lateral guidance is angular with increasing sensitivity as the aircraft continues along the final approach track; much like a localiser indication.

LPV (Localiser Performance with Vertical Guidance)

This is an Approach Procedure with Vertical Guidance. The Lateral and Vertical guidance is provided by GPS and SBAS. Lateral and vertical guidance are angular with increasing sensitivity as the aircraft progresses down the final approach track; much like an ILS indication. LPV approach and annunciation on HSI is available only is SBAS available.

Before selecting a LPV approach, make sure SBAS is indicated AC-TIVE in the GPS status box on AUX-GPS STATUS page on MFD. If DISABLED highlight the appropriate SBAS SELECTION Box under SBAS softkey under AUX-GPS Status Page on MFD.

Should SBAS signal be lost, augmentation is lost. It may be possible to continue with LNAV only but this is reliant on the availability of RAIM.

NOTE: The instrument approach procedures associated with RNP APCH are entitled RNAV (GNSS) to reflect that GNSS is the primary navigation system. With the inherent onboard performance monitoring and alerting provided by GNSS, the navigation specification qualifies as RNP, however these procedures pre-date PBN, so the chart name has remained as RNAV.

Missed approach procedures

Before commencing an RNAV (GNSS) missed approach, a MAP should be possible without reference to GPS derived navigation so that, in the event of a loss of GPS accuracy or loss of integrity during the approach, a safe return to above Minimum Sector Altitude can be made.

This may be possible by dead reckoning (DR) navigation but where this is not possible and the MAP requires reference to terrestrial navigation aids, these must be available, tuned and correctly identified before passing the IAF and remain available throughout the approach.

Reasons for a missed approach are many and if GPS information remains available for the MAP, the pilot must be able to sequence the system correctly past the MAP, in order to follow the published MAP correctly.

Pilots should be fully competent in the necessary selection routines required by their own equipment, in order to transition to the MAP and preserve accurate navigation throughout.

When GPS navigation is NOT available for the MAP, it may be necessary to reset the display function of the HSI/CDI to disengage GPS information and regain VOR/LOC display. Pilots must be fully conversant with navigation display selections in order safely to follow the MAP.

Abnormal procedures for approaches

As the aircraft approaches the FAF (LNAV Only, without SBAS), the receiver automatically perform a final RAIM prediction for the approach. The receiver will not enter the approach mode if this RAIM prediction is negative. In this case, the approach should be discontinued.

However, this RAIM check assumes availability of the full constellation and will not take account of scheduled interruptions or failures. This can lead to a successful RAIM prediction at this point when the RAIM function itself is not available.

If RAIM is lost after passing the FAF the equipment should continue to provide navigation, where possible for five minutes, before giving a RAIM loss indication and this should be enough to complete the approach.

Should RAIM detect an out of tolerance situation, a warning will be given and a missed approach should be initiated immediately.

P2010 - Aircraft Flight Manual Page APV 4-38

The approach should always be discontinued:

- If the receiver fails to engage the correct approach mode or;
- In case of Loss Of Integrity (LOI) monitoring or;
- Whenever the HSI/CDI indication (or GP indication where applicable) exceeds half scale displacement or;
- If a RAIM (or equivalent) warning is activated or;
- If RAIM (or equivalent) function is not available and annunciated before passing the FAF.

Supplement D07: pages replacement instructions

SECTION 5 – PERFORMANCE

Make sure you first applied instructions reported on the basic AFM, Section 5 Performance

According to A/C configuration, Supplement D07- Performances pages replace basic AFM Section 5 as whole INTENTIONALLY LEFT BLANK

COSTRUZIONA ARROMAUTICHE P2010 - Aircraft Flight Manual Page V5 - 1

SECTION 5 - PERFORMANCE

INDEX

1.	Introduction	2
2.	Use of Performance Charts	2
3.	Airspeed Indicator System Calibration	3
4.	ICAO Standard Atmosphere	5
5.	Stall speed	6
6.	Crosswind	7
7.	Take-Off performances	8
8.	Take-off Rate of Climb	11
9.	En-Route Rate of Climb	12
10.	Cruise Performance	13
11.	Landing performances	17
12.	Balked Landing Performance	18
13.	Noise Data	19

INDEX

COTTECNAM P2010 - Aircraft Flight Manual Page V5 - 2

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

Data reported in graphs and/or in tables were determined using:

- ✓ "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- \checkmark aircraft and engine in good condition
- ✓ average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

- ✓ Airspeed
- ✓ External temperature
- ✓ Altitude
- ✓ Weight
- ✓ Runway type and condition

2. Use of Performance Charts

Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

COSTRUZION A ROMANTICHE P2010 - Aircraft Flight Manual Page V5 - 3

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Normal Static Source

Graph shows calibrated airspeed V_{IAS} as a function of indicated airspeed V_{CAS} .

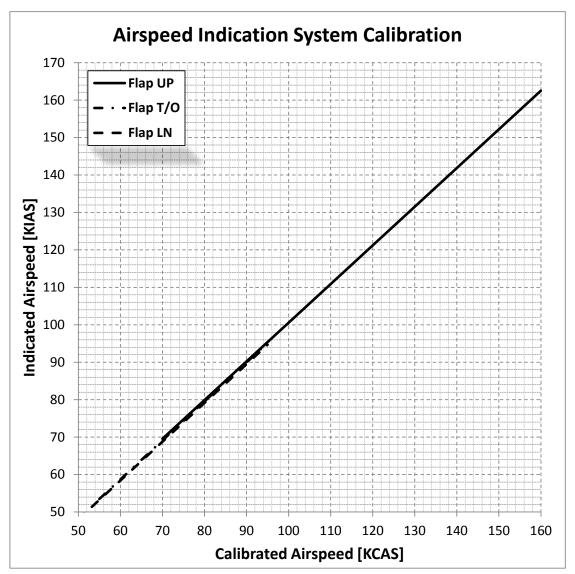
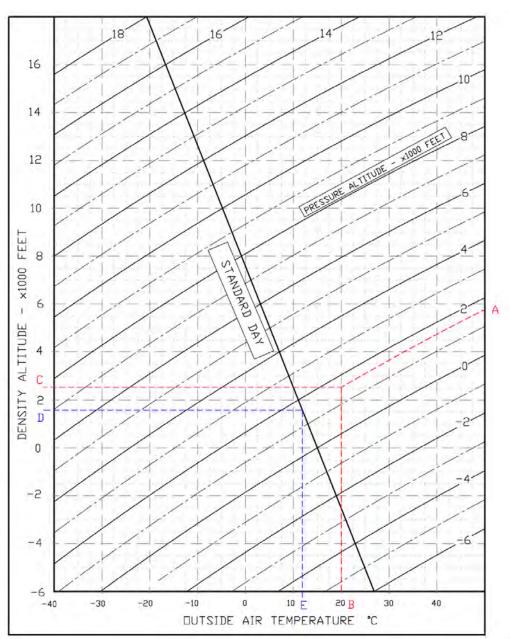


Fig. 5-1. Calibrated vs Indicated Airspeed

Example:

<u>Given</u>	<u>Find</u>
KIAS 75.0	VCAS 747
Flap: UP	KCAS 74.7
NOTE	Indicated airspeed assumes


ndicated airspeed assumes 0 as an instrument error

COSTRUZIONI AEROMAUTICHE P2010 - Aircraft Flight Manual Page V5 - 4

Alternate Static Source

		Alternate Sta	atic Air Open	Vents	s Open	Vents and	Hot Air Open		
		IAS	H _P	IAS	H _P	IAS	H _P		
		[kn]	[ft]	[kn]	[ft]	[kn]	[ft]		
Pressure Altitude [ft]	IAS [kn]			FL	AP UP				
	70	75	1020	72	1010	72	1020		
	90	95	1020	92	1030	93	1020		
	110	115	1030	113	1020	112	1020		
	135	140	1040	139	1030	137	1030		
				FLA	P T/O				
1000	60	63	1020	63	1020	62	1010		
1000	70	75	1020	73	1020	72	1020		
	90	94	1020	92	1020	92	1020		
				FLA	P LND				
	60	62	1020	61	1020	61	1020		
	70	72	1020	72	1020	71	1020		
	90	92	1020	91	1020	91	1020		
	1			FL	AP UP				
	70	72	5020	72	5020	71	5020		
	90	94	5030	93	5020	92	5020		
	110	114	5030	113	5020	112	5020		
	133	137	5040	136	5030	135	5020		
		FLAP T/O							
	60	62	5010	62	5020	61	5010		
5000	70	74	5020	73	5020	72	5020		
	90	93	5030	93	5020	93	5020		
				FLA	P LND				
	60	63	5030	62	5020	61	5000		
	70	72	5020	72	5010	71	5010		
	90	92	5020	92	5020	91	5010		
.				FL	AP UP		·		
	70	72	8020	72	8020	71	8020		
	90	93	8030	92	8020	92	8020		
	110	113	8030	112	8020	112	8020		
	128	131	8040	130	8030	130	8020		
				FLA	P T/O				
0000	60	62	8010	62	8020	61	8010		
8000	70	73	8020	72	8020	72	8020		
	90	92	8030	92	8020	92	8020		
				FLA	P LND				
	60	61	8020	61	8020	61	8000		
	70	72	8010	71	8010	71	8010		
	90	92	8010	91	8010	91	8010		

TECNAM P2010 - Aircraft Flight Manual Page V5 - 5

4. ICAO STANDARD ATMOSPHERE

Examples:

ScopeGivenFindDensity Altitude:A: Pressure altitude = 1600ft
B: Temperature = $20^{\circ}C$ \rightarrow C: Density Altitude = 2550ftISA Temperature:D: Pressure altitude = 1600ft \rightarrow E: ISA Air Temperature = $12^{\circ}C$

COSTRUZIONA ARROMAUTICHE P2010 - Aircraft Flight Manual Page V5 - 6

5. STALL SPEED

Weight: 1160 kg (2557 lb) Throttle Lever: IDLE CG: Most Forward (19%) No ground effect									
	BANK			STALL	Speed				
WEIGHT	ANGLE	FLAF	FLAPS 0° FLAPS T/O FLAPS FULL						
[kg] ([lb])	[deg]	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS		
	0	59	60	53	55	50	52		
1160	15	60 61 54 56 51 53							
(2557)	30	64	65	58	59	54	56		
(FWD C.G.)	45	71	71	64	65	61	62		
	60	85	85	77	78	73	74		

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 350 ft with banking below 15°.

6. CROSSWIND

Maximum demonstrated crosswind is 12 kts

 \Rightarrow *Example*:

<u>Given</u>

<u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 kts

Crosswind = 10 kts

Headwind = 17.5 kts

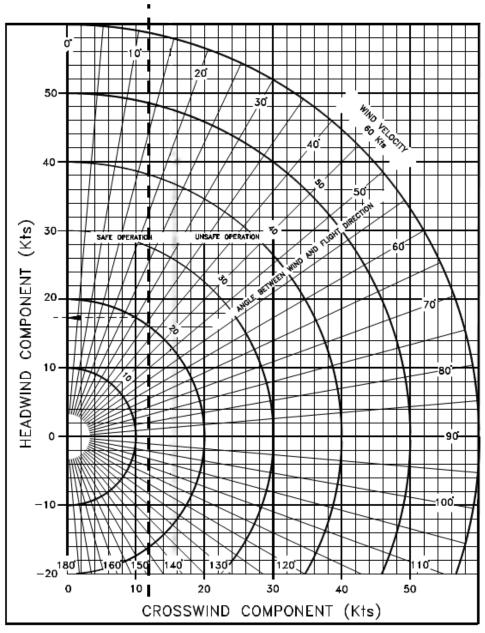


FIG. 5-3. CROSSWIND CHART

AFMS N°DO7 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES COSTRUZIONI AERONAUTICHE P2010 - AIrgraft Flight Manual Page V5 - 8

7. TAKE-OFF PERFORMANCES

NOTE

To account for likely in service performance variations apply a factored to distances of 1.10

Weight = 1160) kg (2557 lb)							
Flaps: T/O Corrections								
Speed at Lift-Off =	60 KIAS	Headwind: -10 m for each kn						
Speed Over 50ft C		Tailv	vind: +20 m f	for each kn				
•	eller Lever: Full Forwar	d Gras	s Runway: +:	10% to Grour	nd Roll			
Runway: Paved			way slope: +2	L0% to Grour	nd Roll for eac	ch +1%		
•				Distance [m	1			
Pressure				(Distance [ft]	-			
Altitude				ture [°C]	17			
[ft]		-25	0	25	50	ISA		
		234	295	364	442	336		
	Ground Roll	(768)	(968)	(1194)	(1450)	(1102)		
S.L.		421	526	644	776	595		
	At 50 ft AGL	(1381)	(1726)	(2113)	(2546)	(1952)		
	0	256	322	397	482	360		
1000	Ground Roll	(840)	(1056)	(1302)	(1581)	(1181)		
1000	At 50 ft AGL	458	572	701	844	637		
	AL SU IL AGL	(1503)	(1877)	(2300)	(2769)	(2090)		
	Ground Roll	279	352	434	526	387		
2000		(915)	(1155)	(1424)	(1726)	(1270)		
2000	At 50 ft AGL	499	622	762	918	682		
	AUSOITAGE	(1637)	(2041)	(2500)	(3012)	(2238)		
	Ground Roll	305	384	474	575	415		
3000		(1001)	(1260)	(1555)	(1886)	(1362)		
	At 50 ft AGL	543	678	830	1000	731		
		(1781)	(2224)	(2723)	(3281)	(2398)		
	Ground Roll	333	420	518	628	446		
4000		(1093)	(1378)	(1699)	(2060)	(1463)		
	At 50 ft AGL	591	738	904	1089	783		
		(1939)	(2421)	(2966)	(3573)	(2569)		
	Ground Roll	364	459	566	687	480		
5000		(1194)	(1506)	(1857)	(2254)	(1575)		
	At 50 ft AGL	645	805	986	1188	840 (275 c)		
		(2116)	(2641)	(3235)	(3898)	(2756)		
	Ground Roll	399	502	620 (2024)	752	516 (1602)		
6000		(1309)	(1647)	(2034)	(2467)	(1693)		
	At 50 ft AGL	703	878 (2001)	1075 (2527)	1296	901 (2056)		
		(2306)	(2881)	(3527)	(4252)	(2956)		

ECONAM P2010 - Aircraft Flight Manual Page V5 - 9

Weight = 1060 kg (2337 lb)

Flaps: T/O Speed at Lift-Off = 60 KIAS

Speed Over 50ft Obstacle = 65 KIAS Throttle and Propeller Lever: Full Forward Runway: Payed Corrections Headwind: -10 m for each kn Tailwind: +20 m for each kn Grass Runway: +10% to Ground Roll Runway slope: +10% to Ground Roll for each +1%

Runway: Paved										
Pressure	Distance [m] (Distance [ft])									
Altitude										
			Temperature [°C]							
[ft]		-25	0	25	50	ISA				
	Ground Roll	189	238	293	356	270				
S.L.		(620)	(781)	(961)	(1168)	(886)				
J.L.	At 50 ft AGL	342	427	523	630	483				
	AL JUIT AGE	(1122)	(1401)	(1716)	(2067)	(1585)				
	Ground Roll	206	259	320	388	290				
1000		(676)	(850)	(1050)	(1273)	(951)				
1000	At 50 ft AGL	372	464	569	685	517				
		(1220)	(1522)	(1867)	(2247)	(1696)				
	Ground Roll	225	283	349	424	311				
2000		(738)	(928)	(1145)	(1391)	(1020)				
2000	At 50 ft AGL	405	505	619	745	554				
		(1329)	(1657)	(2031)	(2444)	(1818)				
	Ground Roll	246	309	382	463	334				
3000		(807)	(1014)	(1253)	(1519)	(1096)				
3000	At 50 ft AGL	441	550	674	812	593				
		(1447)	(1804)	(2211)	(2664)	(1946)				
	Ground Roll	268	338	417	506	359				
4000		(879)	(1109)	(1368)	(1660)	(1178)				
4000	At 50 ft AGL	480	599	734	884	636				
		(1575)	(1965)	(2408)	(2900)	(2087)				
	Ground Roll	294	370	456	553	386				
5000		(965)	(1214)	(1496)	(1814)	(1266)				
2200	At 50 ft AGL	523	653	800	964	682				
		(1716)	(2142)	(2625)	(3163)	(2238)				
	Ground Roll	321	404	499	605	416				
6000		(1053)	(1325)	(1637)	(1985)	(1365)				
	At 50 ft AGL	571	713	873	1052	732				
		(1873)	(2339)	(2864)	(3451)	(2402)				

EXTECNAM P2010 - Aircraft Flight Manual

Page V5 - 10

Weight = 960 kg (2116 lb)

Flaps: T/O

Speed at Lift-Off = 60 KIAS Speed Over 50ft Obstacle = 65 KIAS Throttle and Propeller Lever: Full Forward Runway: Paved Corrections Headwind: -10 m for each kn Tailwind: +20 m for each kn Grass Runway: +10% to Ground Roll Runway slope: +10% to Ground Roll for each +1%

Runway: Paved				Distance [m]				
Pressure		(Distance [ft])						
Altitude		Temperature [°C]						
[ft]		-25	0	25	50	ISA		
	Ground Roll	149	187	231	281	213		
S.L.	Ground Kon	(489)	(614)	(758)	(922)	(699)		
J.L.	At 50 ft AGL	272	340	416	501	384		
		(892)	(1115)	(1365)	(1644)	(1260)		
	Ground Roll	162	204	252	306	229		
1000		(531)	(669)	(827)	(1004)	(751)		
1000	At 50 ft AGL	296	369	452	545	411		
		(971)	(1211)	(1483)	(1788)	(1348)		
	Ground Roll	177	223	275	334	245		
2000		(581)	732)	(902)	(1096)	(804)		
	At 50 ft AGL	322	402	492	593	440		
		(1056)	(1319)	(1614)	(1946)	(1444)		
	Ground Roll	194	244	301	365	264		
3000		(636)	(801)	(988)	(1198)	(866)		
	At 50 ft AGL	350	438	536	645	472		
		(1148)	(1437)	(1759)	(2116)	(1549)		
	Ground Roll	212	266	329	399	283		
4000		(696)	(873)	(1079)	(1309)	(928)		
1000	At 50 ft AGL	382	477	584	703	506		
		(1253)	(1565)	(1916)	(2306)	(1660)		
	Ground Roll	231	291	360	436	305		
5000		(758)	(955)	(1181)	(1430)	(1001)		
	At 50 ft AGL	416	520	636	766	542		
		(1365)	(1706)	(2087)	(2513)	(1778)		
	Ground Roll	253	319	393	477	328		
6000		(830)	(1047)	(1289)	(1565)	(1076)		
	At 50 ft AGL	454	567	694	836	582		
		(1489)	(1860)	(2277)	(2743)	(1909)		

P2010 - Aircraft Flight Manual

Page V5 - 11

8. TAKE-OFF RATE OF CLIMB

NOTE

To account for likely in service performance variations apply a factored to rate of climb of 0.90

Throttle Lever: Full Forward Propeller: 2600 RPM Flaps: Take-Off									
Weight	Pressure	Climb Speed		Rate of	f Climb [ˈ	ft/min]			
	Altitude	Vy		Tempera	ture [°C]	l			
[kg] ([lb])	[ft]	[KIAS]	-25	0	25	50	ISA		
	S.L.	72	974	808	659	525	717		
	2000	71	848	684	538	406	617		
	4000	70	721	560	417	287	518		
1160	6000	69	596	437	296	169	419		
(2557)	8000	68	470	315	176	51	320		
	10000	67	345	193	56	-67	221		
	12000	67	221	71	-63	-184	122		
	14000	66	96	-51	-182	-300	23		
	S.L.	70	1118	943	787	647	848		
	2000	69	985	813	660	522	744		
	4000	69	853	684	533	397	640		
1060	6000	68	721	555	406	273	536		
(2337)	8000	68	589	426	280	149	431		
	10000	67	458	298	155	26	327		
	12000	66	327	170	29	-97	223		
	14000	66	197	43	-95	-220	119		
	S.L.	69	1288	1103	937	787	1001		
	2000	69	1147	964	801	654	890		
	4000	68	1006	827	666	522	780		
960	6000	68	866	689	532	390	669		
(2116)	8000	67	726	553	398	258	558		
	10000	66	586	416	264	127	448		
	12000	66	447	280	131	-3	337		
	14000	65	309	145	-2	-134	226		

P2010 - Aircraft Flight Manual

Page V5 - 12

9. EN-ROUTE RATE OF CLIMB

NOTE

To account for likely in service performance variations apply a factored to rate of climb of 0.90

Throttle Lever: Full Forward Propeller: 2600 RPM Flaps: UP									
Weight	Pressure	Climb Speed		Rate o	f Climb [ˈ	ft/min]			
Weight	Altitude	V _Y		Tempera	ture [°C]	l			
[kg] ([lb])	[ft]	[KIAS]	-25	0	25	50	ISA		
	S.L.	82	1131	944	776	625	841		
	2000	81	989	804	639	491	729		
	4000	80	846	665	503	357	618		
1160	6000	79	705	526	367	224	506		
(2557)	8000	78	563	388	232	91	394		
	10000	77	423	251	97	-41	282		
	12000	76	282	113	-37	-173	171		
	14000	76	142	-23	-171	-305	59		
	S.L.	82	1284	1085	907	747	976		
	2000	81	1133	937	762	605	857		
	4000	80	982	789	618	463	739		
1060	6000	79	831	642	474	322	621		
(2337)	8000	78	682	496	330	181	502		
	10000	77	532	350	187	40	384		
	12000	76	383	204	45	-99	265		
	14000	75	235	59	-97	-239	147		
	S.L.	81	1465	1251	1060	888	1134		
	2000	80	1302	1092	905	735	1007		
	4000	79	1140	934	749	583	880		
960	6000	78	979	776	595	432	753		
(2116)	8000	77	818	619	441	281	625		
	10000	76	658	462	287	130	498		
	12000	75	498	306	134	-20	371		
	14000	74	339	150	-18	-170	244		

10. CRUISE PERFORMANCE

Weight: 1160 kg (2557 lb)										
Pressure Altitude: 0 ft										
Mixture: FULL RICH ISA – 30°C (-15°C) ISA (15°C) ISA + 30°C (45°C)										
RPM	MAP [inHg]	PWR [%MCP]	TAS	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])
2700	29.9	113	138	19.2 (72.7)	107	139	18.4 (69.7)	102	141	17.7 (67)
	29.9	109	136	18.7 (70.8)	103	138	17.9 (67.8)	98	139	17.2 (65.1)
	28	101	132	17.6 (66.6)	96	134	16.9 (64)	91	135	16.3 (61.7)
2000	26	90	126	16.1 (60.9)	85	127	15.4 (58.3)	81	128	14.9 (56.4)
2600	24	79	120	14.7 (55.6)	75	121	14.1 (53.4)	71	121	13.6 (51.5)
	22	69	113	13.3 (50.3)	65	113	12.8 (48.5)	62	113	12.4 (46.9)
	20	59	105	11.9 (45)	56	104	11.5 (43.5)	53	103	11.1 (42)
	29.9	103	133	17.9 (67.8)	98	135	17.1 (64.7)	93	136	16.5 (62.5)
	28	95	129	16.8 (63.6)	90	130	16.1 (60.9)	85	131	15.5 (58.7)
2450	26	85	123	15.4 (58.3)	80	124	14.8 (56)	76	125	14.3 (54.1)
2450	24	75	117	14.1 (53.4)	71	117	13.5 (51.1)	67	118	13.1 (49.6)
	22	65	110	12.8 (48.5)	62	110	12.3 (46.6)	59	110	11.9 (45)
	20	55	102	11.5 (43.5)	52	101	11.1 (42)	50	100	10.7 (40.5)
	29.9	100	131	17.4 (65.9)	94	133	16.7 (63.2)	90	134	16.1 (60.9)
	28	91	127	16.2 (61.3)	86	128	15.6 (59.1)	82	129	15 (56.8)
2350	26	81	121	15 (56.8)	77	122	14.4 (54.5)	73	123	13.9 (52.6)
2330	24	72	115	13.7 (51.9)	68	115	13.1 (49.6)	65	115	12.7 (48.1)
	22	62	108	12.4 (46.9)	59	108	12 (45.4)	56	107	11.6 (43.9)
	20	53	99	11.1 (42)	50	98	10.7 (40.5)	48	96	10.4 (39.4)

EXTECNAM P2010 - Aircraft Flight Manual F

Page	V5	-	14

Mixture: FULL RICHMixture: FULL RICHISA -30° C-21°C)FC. [BM]PWR [BM]TAS [BM]F.C. [BM]PWR [BM]TAS [BM]TAS [BM]I.S. [BM]I.S.I.S.I.S.PWR [BM]TAS [BM]I.S.PWR [BM]TAS [BM]I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S.I.S. <th colspan="10">Weight: 1160 kg (2557 lb) Pressure Altitude: 3000 ft</th>	Weight: 1160 kg (2557 lb) Pressure Altitude: 3000 ft										
RPM [mHeg]PWR [mHeg]RAS [mHeg]F.C. 											
[inhg][ismder][ism][igal/h] ([L/h)][ismder][ism][igal/h] ([L/h)][ismder][ism][ismder][i			ISA	– 30°0	C (-21°C)		ISA (9	°C)	ISA	A + 30°	C (39°C)
26.8 100 135 17.4 (65.9) 94 136 16.7 (63.2) 90 137 16.1 (60.9) 26 96 133 16.9 (64) 90 134 16.2 (61.3) 86 135 15.6 (59.1) 24 85 126 15.4 (58.3) 800 127 14.8 (56) 76 128 14.3 (54.1) 20 63 111 12.6 (47.7) 600 111 12.1 (45.8) 57 110 11.7 (44.3) 18 53 101 11.1 (42) 50 99 10.7 (40.5) 47 97 10.4 (39.4) 26.8 94 132 16.6 (62.8) 89 132 15.9 (60.2) 84 133 15.3 (57.9) 264 90 123 14.7 (55.6) 75 123 14.2 (58.3) 81 130 14.8 (56) 244 80 123 14.7 (55.6) 75 123 14.2 (58.3) 81 130 14.8 (56) 24 80	RPM										
269613316.9 (64)9013416.2 (61.3)8613515.6 (59.1)248512615.4 (58.3)8012714.8 (56)7612814.3 (54.1)206311112.6 (47.7)60011112.1 (45.8)5711011.7 (44.3)185310111.1 (42)5009910.7 (40.5)479710.4 (39.4)26.89413216.6 (62.8)89013215.9 (60.2)8413315.3 (57.9)26.49012316.1 (60.9)8512915.4 (58.3)8113014.8 (56)2480012314.7 (55.6)75512314.2 (53.8)77212413.7 (51.9)26.490013012.1 (45.8)57710811.6 (43.9)5410711.3 (42.8)259013016.1 (60.9)85513115.6 (58.7)8113114.9 (56.4)269013016.1 (60.9)85710811.6 (43.9)5410711.3 (42.8)269013016.1 (60.9)85710811.6 (43.9)5410711.3 (42.8)27143150. (59.1)6613115.5 (58.7)8113114.9 (56.4)289013016.1 (60.9)85713115.5 (58.7)8113114.9 (56.4)2914.7 (55.9)8113215.5 (58.8)77129 <th< th=""><td>2700</td><td>26.8</td><td>104</td><td>137</td><td>17.9 (67.8)</td><td>98</td><td>138</td><td>17.2 (65.1)</td><td>93</td><td>139</td><td>16.5 (62.5)</td></th<>	2700	26.8	104	137	17.9 (67.8)	98	138	17.2 (65.1)	93	139	16.5 (62.5)
24 85 126 15.4 (58.3) 80 127 14.8 (56) 76 128 14.3 (54.1) 22 76 128 14.3 (54.1) 70 120 13.5 (51.1) 67 120 13 (49.2) 20 63 111 12.6 (47.7) 600 111 12.1 (45.8) 57 110 11.7 (44.3) 18 53 101 11.1 (42) 500 99 10.7 (40.5) 47 97 10.4 (39.4) 26.8 94 132 16.6 (62.8) 89 132 15.9 (60.2) 84 133 15.3 (57.9) 26.4 90 129 16.1 (60.9) 85 129 15.4 (58.3) 81 130 14.8 (56) 24 800 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 24 70 116 13.5 (51.1) 666 116 12.9 (48.8) 63 117 12.5 (47.3) 20 600		26.8	100	135	17.4 (65.9)	94	136	16.7 (63.2)	90	137	16.1 (60.9)
2600 22 76 128 14.3 (54.1) 70 120 13.5 (51.1) 67 120 13 (49.2) 20 63 111 12.6 (47.7) 600 111 12.1 (45.8) 57 110 11.7 (44.3) 18 53 101 11.1 (42) 500 99 10.7 (40.5) 47 97 10.4 (39.4) 26.8 94 132 16.6 (62.8) 89 132 15.9 (60.2) 84 133 15.3 (57.9) 26 90 129 16.1 (60.9) 85 129 15.4 (58.3) 81 130 14.8 (56) 24 80 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 21 700 116 13.5 (51.1) 666 116 12.9 (48.8) 63 117 12.5 (47.3) 22 70 116 13.5 (51.1) 666 116 12.9 (48.9) 63 117 12.5 (47.3) 20		26	96	133	16.9 (64)	90	134	16.2 (61.3)	86	135	15.6 (59.1)
22 76 128 14.3 (54.1) 70 120 13.5 (51.1) 67 120 13 (49.2) 20 63 111 12.6 (47.7) 600 111 12.1 (45.8) 57 110 11.7 (44.3) 18 53 101 11.1 (42) 500 99 10.7 (40.5) 47 97 10.4 (39.4) 26.8 94 132 16.6 (62.8) 89 132 15.9 (60.2) 84 133 15.3 (57.9) 26.4 90 129 16.1 (60.9) 85 129 15.4 (58.3) 81 130 14.8 (56) 24.4 800 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 24.4 800 123 14.7 (55.6) 75 123 14.2 (53.8) 633 117 12.5 (47.3) 24.0 700 116 13.5 (51.1) 666 116 12.9 (48.8) 633 117 12.5 (47.3) 20 6	2600	24	85	126	15.4 (58.3)	80	127	14.8 (56)	76	128	14.3 (54.1)
18 53 101 11.1 (42) 50 99 10.7 (40.5) 47 97 10.4 (39.4) 26.8 94 132 16.6 (62.8) 89 132 15.9 (60.2) 84 133 15.3 (57.9) 26 90 129 16.1 (60.9) 85 129 15.4 (58.3) 81 130 14.8 (56) 24 80 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 22 70 116 13.5 (51.1) 666 116 12.9 (48.8) 63 117 12.5 (47.3) 20 60 108 12.1 (45.8) 57 108 11.6 (43.9) 54 107 11.3 (42.8) 18 50 97 10.7 (40.5) 477 97 10.4 (39.4) 455 95 10.1 (38.2) 26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 24 777	2000	22	76	128	14.3 (54.1)	70	120	13.5 (51.1)	67	120	13 (49.2)
26.8 94 132 16.6 (62.8) 89 132 15.9 (60.2) 84 133 15.3 (57.9) 26 90 129 16.1 (60.9) 85 129 15.4 (58.3) 81 130 14.8 (56) 24 80 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 22 70 116 13.5 (51.1) 66 116 12.9 (48.8) 63 117 12.5 (47.3) 20 60 108 12.1 (45.8) 57 108 11.6 (43.9) 54 107 11.3 (42.8) 18 50 97 10.7 (40.5) 47 97 10.4 (39.4) 45 95 10.1 (38.2) 26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 24 77		20	63	111	12.6 (47.7)	60	111	12.1 (45.8)	57	110	11.7 (44.3)
2450 26 90 129 16.1 (60.9) 85 129 15.4 (58.3) 81 130 14.8 (56) 24 80 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 22 70 116 13.5 (51.1) 66 116 12.9 (48.8) 63 117 12.5 (47.3) 20 600 108 12.1 (45.8) 57 108 11.6 (43.9) 54 107 11.3 (42.8) 18 50 97 10.7 (40.5) 477 97 10.4 (39.4) 455 95 10.1 (38.2) 26.8 900 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 2330 24 777 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3)		18	53	101	11.1 (42)	50	99	10.7 (40.5)	47	97	10.4 (39.4)
2450 24 80 123 14.7 (55.6) 75 123 14.2 (53.8) 72 124 13.7 (51.9) 22 70 116 13.5 (51.1) 66 116 12.9 (48.8) 63 117 12.5 (47.3) 20 60 108 12.1 (45.8) 57 108 11.6 (43.9) 54 107 11.3 (42.8) 18 50 97 10.7 (40.5) 47 97 10.4 (39.4) 45 95 10.1 (38.2) 26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 24 77 121 14.3 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20		26.8	94	132	16.6 (62.8)	89	132	15.9 (60.2)	84	133	15.3 (57.9)
2450 22 70 116 13.5 (51.1) 66 116 12.9 (48.8) 63 117 12.5 (47.3) 20 60 108 12.1 (45.8) 57 108 11.6 (43.9) 54 107 11.3 (42.8) 18 50 97 10.7 (40.5) 47 97 10.4 (39.4) 45 95 10.1 (38.2) 26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 2350 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)		26	90	129	16.1 (60.9)	85	129	15.4 (58.3)	81	130	14.8 (56)
22 70 116 13.5 (51.1) 66 116 12.9 (48.8) 63 117 12.5 (47.3) 20 60 108 12.1 (45.8) 57 108 11.6 (43.9) 54 107 11.3 (42.8) 18 50 97 10.7 (40.5) 47 97 10.4 (39.4) 45 95 10.1 (38.2) 26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)	2450	24	80	123	14.7 (55.6)	75	123	14.2 (53.8)	72	124	13.7 (51.9)
26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)	2450	22	70	116	13.5 (51.1)	66	116	12.9 (48.8)	63	117	12.5 (47.3)
26.8 90 130 16.1 (60.9) 85 131 15.5 (58.7) 81 131 14.9 (56.4) 26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)		20	60	108	12.1 (45.8)	57	108	11.6 (43.9)	54	107	11.3 (42.8)
26 86 127 15.6 (59.1) 81 128 15 (56.8) 77 129 14.4 (54.5) 2350 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)		18	50	97	10.7 (40.5)	47	97	10.4 (39.4)	45	95	10.1 (38.2)
2350 24 77 121 14.3 (54.1) 72 122 13.8 (52.2) 69 122 13.3 (50.3) 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)		26.8	90	130	16.1 (60.9)	85	131	15.5 (58.7)	81	131	14.9 (56.4)
2350 22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)		26	86	127	15.6 (59.1)	81	128	15 (56.8)	77	129	14.4 (54.5)
22 67 114 13.1 (49.6) 64 114 12.6 (47.7) 60 114 12.2 (46.2) 20 57 105 11.7 (44.3) 54 105 11.3 (42.8) 51 103 11 (41.6)	2350	24	77	121	14.3 (54.1)	72	122	13.8 (52.2)	69	122	13.3 (50.3)
	2330	22	67	114	13.1 (49.6)	64	114	12.6 (47.7)	60	114	12.2 (46.2)
18.5 50 98 10.7 (40.5) 47 95 10.4 (39.4) 45 92 10.1 (38.2)		20	57	105	11.7 (44.3)	54	105	11.3 (42.8)	51	103	11 (41.6)
		18.5	50	98	10.7 (40.5)	47	95	10.4 (39.4)	45	92	10.1 (38.2)

WITECNAM P2010 - Aircraft Flight Manual

Page V5 - 15

Pressu	Weight: 1160 kg (2557 lb) Pressure Altitude: 6000 ft Mixture: FULL RICH										
		ISA	– 30°C	C (-27°C)		ISA (3°C)	IS	A + 30°	°C (33°C)	
RPM	MAP [inHg]	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	
2700	23.9	94	135	16.6 (62.8)	89	136	15.9 (60.2)	84	137	15.3 (57.9)	
	23.9	90	133	16.1 (60.9)	85	134	15.5 (58.7)	81	134	14.9 (56.4)	
	23	85	130	15.5 (58.7)	80	130	14.8 (56)	76	131	14.3 (54.1)	
2000	22	80	126	14.8 (56)	75	127	14.2 (53.8)	72	127	13.6 (51.5)	
2600	20	68	117	13.2 (50)	64	117	12.7 (48.1)	61	117	12.3 (46.6)	
	19	63	113	12.5 (47.3)	59	112	12 (45.4)	56	111	11.6 (43.9)	
	18	57	108	11.7 (44.3)	54	106	11.3 (42.8)	51	104	10.9 (41.3)	
	23.9	85	129	15.4 (58.3)	80	130	14.8 (56)	76	131	14.2 (53.8)	
	23	80	126	14.8 (56)	75	127	14.2 (53.8)	72	127	13.7 (51.9)	
2450	22	75	123	14.1 (53.4)	71	123	13.6 (51.5)	67	123	13.1 (49.6)	
2450	20	64	114	12.7 (48.1)	61	114	12.2 (46.2)	58	113	11.8 (44.7)	
	19	59	110	12 (45.4)	56	109	11.6 (43.9)	53	107	11.2 (42.4)	
	18	54	104	11.3 (42.8)	51	102	10.9 (41.3)	49	99	10.6 (40.1)	
	23.9	81	127	15 (56.8)	77	128	14.4 (54.5)	73	128	13.8 (52.2)	
	23	77	124	14.3 (54.1)	73	124	13.8 (52.2)	69	124	13.3 (50.3)	
2350	22	72	121	13.7 (51.9)	68	121	13.2 (50)	65	120	12.7 (48.1)	
2330	20	62	112	12.3 (46.6)	58	111	11.9 (45)	55	110	11.5 (43.5)	
	19	57	107	11.7 (44.3)	54	106	11.2 (42.4)	51	103	10.9 (41.3)	
	18.5	54	104	11.3 (42.8)	51	102	10.9 (41.3)	49	99	10.6 (40.1)	

Section 5 - Performances CRUISE PERFORMANCE

WITECNAM P2010 - Aircraft Flight Manual

Page V5 - 16

•	Weight: 1160 kg (2557 lb) Pressure Altitude: 9000 ft										
Mixtu	Mixture: FULL RICH										
		ISA	– 30°C	C (-33°C)		ISA (·	-3°C)	IS	A + 30'	°C (27°C)	
RPM	MAP [inHg]	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	
2700	21.3	85	133	15.4 (58.3)	80	133	14.7 (55.6)	76	133	14.2 (53.8)	
	21.3	81	130	15 (56.8)	77	131	14.3 (54.1)	73	131	13.8 (52.2)	
2000	20	73	124	13.8 (52.2)	69	124	13.3 (50.3)	65	123	12.8 (48.5)	
2600	19	67	119	13.1 (49.6)	64	119	12.6 (47.7)	60	118	12.1 (45.8)	
	18	62	114	12.3 (46.6)	58	113	11.9 (45)	55	111	11.5 (43.5)	
	21.3	77	127	14.3 (54.1)	72	127	13.7 (51.9)	69	127	13.2 (50)	
2450	20	69	121	13.3 (50.3)	65	121	12.8 (48.5)	62	119	12.3 (46.6)	
2450	19	64	116	12.6 (47.7)	60	115	12.1 (45.8)	57	114	11.7 (44.3)	
	18	59	111	11.9 (45)	55	109	11.4 (43.2)	52	106	11.1 (42)	
2350	19	66	121	12.9 (48.8)	62	120	12.4 (46.9)	59	117	11.9 (45)	
2350	18	60	115	12.2 (46.2)	57	113	11.7 (44.3)	54	110	11.3 (42.8)	

Weight: 1160 kg (2557 lb) Pressure Altitude: 12000 ft Mixture: FULL RICH

		ISA	ISA – 30°C (-39°C)			ISA (-9°C)			ISA + 30°C (21°C)		
RPM	MAP [inHg]	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	PWR [%MCP]	TAS [kn]	F.C. [gal/h] ([L/h])	
2700	19	75	128	14.1 (53.4)	70	128	13.5 (51.1)	67	128	13 (49.2)	
2000	19	72	126	13.7 (51.9)	68	126	13.2 (50)	64	125	12.7 (48.1)	
2600	18	66	121	13 (49.2)	63	120	12.4 (46.9)	59	118	12 (45.4)	
2450	19	68	123	13.2 (50)	64	122	12.7 (48.1)	61	121	12.2 (46.2)	
2450	18	63	118	12.5 (47.3)	59	116	12 (45.4)	56	113	11.6 (43.9)	
2350	19	66	121	12.9 (48.8)	62	120	12.4 (46.9)	59	117	11.9 (45)	
2350	18	60	115	12.2 (46.2)	57	113	11.7 (44.3)	54	110	11.3 (42.8)	
	-	=	-	-	-			-			

P2010 - Aircraft Flight Manual

11. LANDING PERFORMANCES

NOTE

To account for likely in service performance variations apply a factored to distances of 1.67

Weight = 1160 kg (2557 lb)

Flaps: LAND Short Final Approach Speed = 66 KIAS Throttle Lever: Idle Runway: Paved

Headwind: -4 m for each kn Tailwind: +13 m for each kn Grass Runway: +10% to Ground Roll Runway slope: -3% to Ground Roll for each +1%

Corrections

Pressure Altitude			Distance [m] (Distance [ft])						
			Temperature [°C]						
[ft]		-25	0	25	50				
C I	Ground Roll	204 (669)	225 (738)	245 (804)	266 (873)	237 (778)			
S.L.	At 50 ft AGL	488 (1601)	509 (1670)	529 (1736)	550 (1804)	521 (1709)			
1000	Ground Roll	212 (696)	233 (764)	254 (833)	276 (906)	244 (801)			
1000	At 50 ft AGL	496 (1627)	517 (1696)	538 (1765)	560 (1837)	528 (1732)			
2000	Ground Roll	220 (722)	242 (794)	264 (866)	286 (938)	251 (823)			
2000	At 50 ft AGL	504 (1654)	526 (1726)	548 (1798)	570 (1870)	535 (1755)			
3000	Ground Roll	228 (748)	251 (823)	274 (899)	297 (974)	259 (850)			
3000	At 50 ft AGL	512 (1680)	535 (1755)	558 (1831)	581 (1906)	543 (1781)			
4000	Ground Roll	236 (774)	260 (853)	284 (932)	308 (1010)	267 (876)			
4000	At 50 ft AGL	520 (1706)	544 (1785)	568 (1864)	592 (1942)	551 (1808)			
5000	Ground Roll	245 (804)	270 (886)	295 (968)	320 (1050)	275 (902)			
5000	At 50 ft AGL	529 (1736)	554 (1818)	579 (1900)	604 (1982)	559 (1834)			
6000	Ground Roll	255 (837)	280 (919)	306 (1004)	332 (1089)	284 (932)			
	At 50 ft AGL	539 (1768)	564 (1850)	590 (1936)	616 (2021)	568 (1864)			

P2010 - Aircraft Flight Manual

Page V5 - 18

12. **BALKED LANDING PERFORMANCE**

NOTE

To account for likely in service performance variations apply a factored to rate of climb and to angle of climb of 0.90

Throttle and Propeller Lever: Full Forward Flaps: LAND Speed: 67 KIAS							
Weight	Pressure	St	teady Gra	adient of	Climb [%	6]	
weight	Altitude		Tempera	ture [°C]			
[kg] ([lb])	[ft]	-25	0	25	50	ISA	
	S.L.	10.9	8.6	6.6	4.7	7.4	
	1000	10.0	7.8	5.7	3.9	6.7	
	2000	9.2	6.9	4.9	3.1	6.0	
1160	3000	8.3	6.1	4.1	2.3	5.3	
(2557)	4000	7.4	5.2	3.2	1.4	4.6	
	5000	6.6	4.4	2.4	0.6	3.9	
	6000	5.7	3.5	1.6	-0.2	3.3	
	7000	4.8	2.7	0.7	-1.0	2.6	
	S.L.	12.9	10.4	8.1	6.1	9.0	
	1000	11.9	9.4	7.2	5.2	8.3	
	2000	11.0	8.5	6.3	4.3	7.5	
1060	3000	10.0	7.6	5.4	3.4	6.8	
(2337)	4000	9.1	6.7	4.5	2.5	6.0	
	5000	8.1	5.7	3.6	1.7	5.3	
	6000	7.2	4.8	2.7	0.8	4.5	
	7000	6.2	3.9	1.8	-0.1	3.8	
	S.L.	15.2	12.4	10	7.7	10.9	
	1000	14.1	11.4	9.0	6.7	10.1	
	2000	13.1	10.4	7.9	5.8	9.3	
960	3000	12.0	9.3	6.9	4.8	8.4	
(2116)	4000	11.0	8.3	5.9	3.8	7.6	
	5000	10.0	7.3	4.9	2.8	6.8	
	6000	8.9	6.3	3.9	1.8	6.0	
	7000	7.9	5.3	2.9	0.9	5.2	

13. Noise Data

Noise level, determined in accordance with ICAO/Annex 16 6th Ed., July 2011, Vol. I°, Chapter 10 and 14 CFR 36.1581(c), is **80.58** dB(A).

NOTE: No determination has been made by the Federal Aviation Administration that the noise levels of this aircraft are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

Supplement D07: pages replacement instructions

SECTION 6 – WEIGHT AND BALANCE

Make sure you first applied instructions reported on the basic AFM, Section 6 Weight and Balance

According to A/C configuration apply following pages replacement:

Supplement D07 WEIGHT AND BALANCE		AFM Section 6
page		page
APV 6-11 thru 12	REPLACES	6-11 thru 12 of basic AFM, Section 6

INTENTIONALLY LEFT BLANK

5 EQUIPMENT LIST

The following is a list of equipment which may be installed in the *P2010*. The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

P2010 - Aircraft Flight Manual

Page V6-12

	EQUIPMENT LIST	AIRCRAFT S/N	DATE	Dате:		
Ref.	DESCRIPTION	P/N	Inst	Weigнт [kg]	Акм [м]	
INSTRUM	ENTATION					
A1	GARMIN G1000 IFDS					
A2	MD 302 MID Continent	6420302-1		0.73	-0.69	
A3	Compass	C2400L4P		0.4	-0.69	
A4	Pitch trim indicator – UMA instruments	N0911S0U2DR00W		0.1	-0.69	
A5	Digital Clock - Davtron	M800-28V-BAT		0.1	-0.69	
AVIONIC	CS & MISCELLANEOUS	I				
B1	ELT-ACK	E-04		0.73	1.61	
B2	Front seats GEVEN	E5-01-007-T01 (LH) E5-01-008-T01 (RH)		20 (10x2)	0.50	
B3	Rear seats GEVEN	E5-01-007-T01 (LH) E5-01-008-T01 (RH)		20 (10x2)	1.26	
B4	Fire extinguisher	13-07655		0.8	-0.18	
В5	First aid kit	FIA270160		0.2	0.5	
B6	Torch			1	-0.18	
B7	Battery GILL247- 24V -19Ah	G247		19.3	3.05	
B8	Fuel qty sender – Electronics international	P-300C		0.15	0.5	
B9	ADF Receiver – RA 3502	0505.757-912		1.5	3.05	
B10	DME Transceiver - King KN 63	066-01070-0001		2	3.05	
GARMIN	N GFC700 Autopilot:					
B11	Servo pitch GSA 80	011-00877-20		1.44	5.3	
B12	Servo roll GSA 80	011-00877-20		1.44	2.05	
B13	Servo pitch trim GSA 81	011-00878-20		1.03	5.3	
LIGHTS	:					
B14	Nav/POS/Strobe Light SH wing - Ultragalactica Aveo	AVE-WPST R/G-54G		1	0.23	
B15	Rudder Nav Light – PosiStrobe CT	AVE-POSW-62G		1	5.5	
B16	Landing/Taxy Light - WHELEN Mod 7167400	01-0771674-00		2	-1.52	
PITOT S	TATIC:					
B17	Pitot (Heated) - Falcon Gauge	24-AN5812-1		3	0.5	
LANDING	Gear Accessories					
C1	Nose Landing Gear Wheel Fairing	210-4-3001-401		1.2	-1.48	
C2	Main Landing Gear Wheel Fairings	210-4-1020-001-L/R		3 (1.5x2)	0.66	

Supplement D07: pages replacement instructions

SECTION 7 - AIRFRAME AND SYSTEMS DESCRIPTION

Make sure you first applied instructions reported on the basic AFM, Section 7 Airframe and Systems Description

Supplement D07 AIRFRAME AND SYSTEMS DESCRIPTION page		AFM Section 7 page
APV 7-8 thru 11	REPLACES	7-8 thru 11 of basic AFM, Section 7
APV 7-16	REPLACES	7-16 of basic AFM, Section 7
APV 7-20 thru 21	REPLACES	7-20 thru 21 of basic AFM, Section 7
APV 7-27	REPLACES	7-27 of basic AFM, Section 7
APV 7-33	REPLACES	7-33 of basic AFM, Section 7
APV 7-36	REPLACES	7-36 of basic AFM, Section 7

According to A/C configuration apply following pages replacement:

INTENTIONALLY LEFT BLANK

Ed 1, Rev. 0

AFMS N°DO7 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES P2010 - Aircraft Flight Manual Page APV 7-8

3 FLIGHT CONTROLS

Aircraft flight controls are operated through conventional stick and rudder pedals. Longitudinal control acts through a system of push-rods and is equipped with a trim tab. a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially. Aileron trimming is carried out on ground through a small tab positioned on left aileron.

Flaps are extended via an electric servo actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the indicator displays three markings relat-ed to 0°, takeoff (T/O) and landing (FULL) positions. A breaker positioned on the right side of the instrument panel protects the electric circuit.

The control of the stabilator trim is operated by means of both a control wheel, located between the two front seats that acts directly on the control cables, and an electrical actuator controlled by a switch located on the control wheel; stabilator trim position is displayed on a dedicated analogue indicator located on the LH area of the instrument panel.

Rudder Trimming device for lateral control is provided by means of an electrical actuator controlled by a rocker switch located near the pitch trim wheel; the surface is con-nected to a potentiometer linked to a rudder trim indicator included in the Garmin G1000 EIS (Engine Indication System).

1st Edition, Rev. 0

AFMS N°D07 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED COSTRUZION AERONAUTICHE AEROPLANES

P2010 - Aircraft Flight Manual Page

Page APV 7-9

4 INSTRUMENT PANEL

The instrument panel is divided in three areas:

- The left area holds Garmin G1000 PFD, a chronometer and the pitch trim indicator;
- The Central area holds the standby unit for PFI parameters, MD 302 suite, and the ELT button.
- The right area holds Garmin G1000 MFD with dedicated AP control buttons and breaker panel;
- The lower-LH portion of the instrument panel holds:
 - ➢ Ignition key;
 - Master and Generator switches;
 - Emergency fuel pump;
 - Avionic Master switch;
 - AP Master switch
 - Trim Disconnect switch
- The lower-Central portion of the instrument panel holds:
 - ➢ Fuel selector valve.
 - Flap Control
- The lower-RH portion of the instrument panel holds:
 - > Pocket

Fig. 7-8. INSTRUMENT PANEL

1st Edition 1, Rev. 0 Section 7 – Airframe and Systems description INSTRUMENTAL PANEL P2010 - Aircraft Flight Manual Page APV 7-10

4.1 **ENGINE CONTROL LEVER**

Engine handling is via three levers: Throttle, RPM lever, Mixture control lever.

They're situated on the center control; the use of "front/forward" and "rear/backward" is defined in relation to the direction of flight (longitudinal).

Mixture control lever

This lever (right hand lever with red handle) controls the fuel-air mixture, which is supplied to the engine.

With the lever full forward, extra fuel is being supplied to the engine which at higher performance setting contributes to engine cooling.

In cruise, the mixture should be made leaner in order to reach the appropriate fuel-air mixture. The leaning procedure is given in Chapter 4.

Lever forward (RICH) >> Mixture rich (in fuel)

Lever to rear (LEAN) >>Mixture lean (in fuel)

To shut off the engine the mixture control lever is pulled to the rear stop: air without fuel is drawn into the cylinders that shuts down.

Throttle

This lever (left hand with large knob) is used to control manifold pressure (MAP).

High manifold pressure means a large quantity of fuel-air mixture is being supplied to engine, while low manifold pressure means a lesser quantity of fuel-air mixture is being supplied.

Propeller lever

By means of this lever (central lever with blue handle) the propeller governor controls the propeller pitch, and consequently engine RPM. A selected RPM is held constant by the governor independent of the airspeed and the throttle setting.

Lever forward (HIGH RPM) = fine pitch

Lever rearward (LOW RPM) = coarse pitch

Following a defect in governor or oil system, the blades go to the finest possible pitch (maximum RPM), thus allowing continuation of the flight.

Following failure of the governor or a serious drop in oil pressure, the RPM should be adjusted using the throttle. Every effort should be made not to exceed 2700 RPM.

The throttle and RPM lever should be moved slowly, in order to avoid over-speed and excessively rapid RPM changes.

AFMS N°D07 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED **AEROPLANES**

P2010 - Aircraft Flight Manual Page APV 7-11

4.2 **ALTERNATE AIR**

Alternate Air knob is located on the central pedestal; when the knob is fully pulled outward from the instrument panel, injectors receive maximum hot air. During normal operation, the knob is set in OFF position.

4.3 **DEFROST AND CABIN HEAT**

Two knobs, located on the lower side of the central pedestal, allow Defrost and Cabin Heat function. The one marked as "Defrost and Cabin Heat" allows hot air to perform windshield defrost and partially cabin heat.

The cabin heat control knob, when fully outward, allows cabin to receive maximum hot air. When both cabin heat and defrost and cabin heat are pulled, air is partitioned.

Fig. 7-9. CENTRAL PEDESTAL

AFMS N°D07 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES

P2010 - Aircraft Flight Manual Page APV 7-16

7. POWERPLANT

7.1. ENGINE

Manufacturer	Lycoming Textron
Model	IO-360-M1A
Type Certificate	EASA TCDS no. IM.E.032
Engine type	Fuel injected (IO), direct drive, four cylinder horizontally opposed, air cooled with down exhaust outlets.
Maximum power Maximum continuous power	134.0 kW (180hp) @ 2700 rpm 129.2 kW (173.3hp) @ 2600 rpm

Oil Consumption					
Operation	RPM	HP	Max.	*Max.	
			Oil Cons.	Cyl. Head	
			Qts./Hr.	Temp.	
Normal Rated	2700	180	.80	500°F (260°C)	
Performance Cruise (75%)	2450	135	.45	500°F (260°C)	
Economy Cruise (60R Rated)	2350	117	.39	500°F (260°C)	

7.2. PROPELLER

Manufacturer	MT Propeller
Model	MTV-15-B/193-52
Type Certificate	EASA TCDS no. P.098
Blades/hub	wood/composite 2-blades - aluminium hub
Diameter	1930 mm (6,33 ft) no reduction allowed
Туре	Variable pitch
Governor	
Manufacturer	MT Propeller
Model	P-860-23:
Туре	Hydraulic

9 ELECTRICAL SYSTEM

Primary DC power is provided by an external alternator with a 28 VDC output, rated of 70 Amps @ 2700 rpm. During normal operations, it recharges the battery.

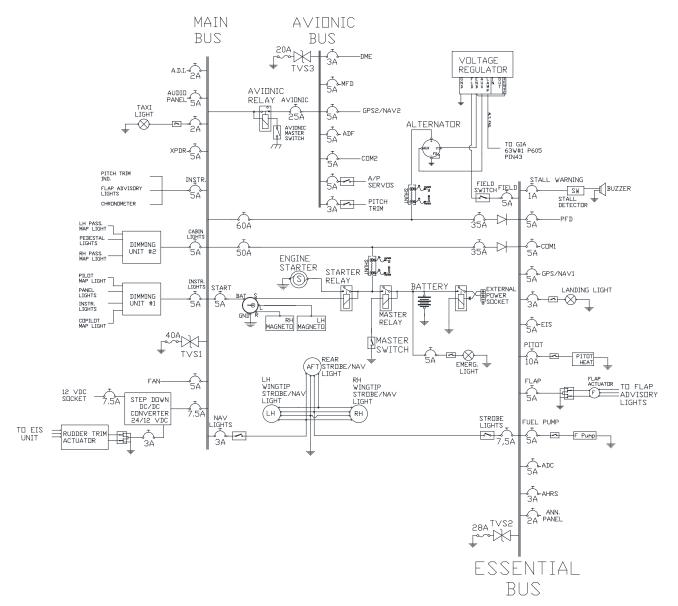
Secondary DC power is provided by a lead type battery (GILL G-247) which provides the energy necessary for feeding the essential electrical loads in the event of an alternator failure.

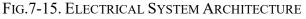
The switch between the energy sources is automatic and no action is required in order to activate the alternate energy source.

For ground maintenance and/or starting, an external power socket is provided.

The alternator and battery are connected to the battery bus in order to provide energy for the electric equipment.

Each electrically fed instrument is connected to a dedicated circuit breaker which protects the cable from the battery bus to the associated electric equipment.




If the Ignition is in the position L, R, or BOTH, an accidental movement of the propeller may start the engine with possible danger for bystanders.

In the following figure is presented the electrical system architecture.

AFMS N°D07 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED COSTRUZIONI AERONAUTICHE AEROPLANES TECNAM

P2010 - Aircraft Flight Manual Page APV 7-21

12.3 STALL WARNING SYSTEM

The aircraft is equipped with a stall warning system consisting of a sensor located on the right wing leading edge connected to a warning horn located near the instrument panel.

1st Edition, Rev. 0

11.2 INTERNAL LIGHTS

On the cabin ceiling are located four map lights, two in the front area (pilot) and two in the rear area (passengers).

In the central area of the cabin ceiling is located a spot light used to illuminate the pedestal during night flight operations. All ceiling lights are dimmable by a dedicated dimmer.

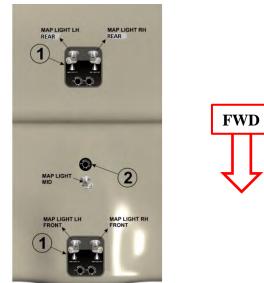
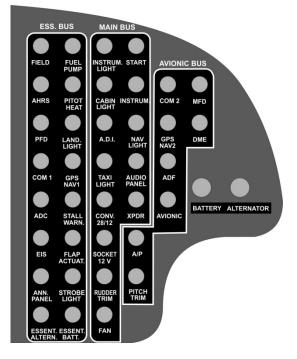


FIG.7-18. CABIN CEILING LIGHTS LAYOUT

The instrument panel can be illuminated by 8 incandescence light strips, all dimmable.


FIG.7-19. INSTRUMENT PANEL LIGHTS LAYOUT

ELT unit position placard:

Breaker Panel placards:

Section 7 – Airframe and Systems description PLACARDS

1st Edition, Rev. 0

AFMS N°DO7 FOR GARMIN GFC700 AUTOPILOT AND VARIABLE PITCH PROPELLER EQUIPPED AEROPLANES ECNAM P2010 - Aircraft Flight Manual Page APV 7-36

Pedestal placards:

Supplement D07: pages replacement instructions

SECTION 8 - GROUND HANDLING & SERVICE

Make sure you first applied instructions reported on the basic AFM, Section 8 Ground Handling & Service

According to A/C configuration refer to the basic AFM, Section 8 - Ground Handling & Service

INTENTIONALLY LEFT BLANK